

Adversarial Fisher Vectors For Unsupervised Representation Learning

Shuangfei Zhai, Walter Talbott, Carlos Guestrin, Joshua M. Susskind Apple Inc.

Questions about GANs

Is the discriminator useful at test time?

Do GANs learn representations of data?

Do you need to train an additional encoder?

Energy Based Model Interpretation of GANs

The WGAN formulation

$$\max_{G} \min_{D} E_{x \sim p_{data}(x)} [-D(x)] + E_{z \sim p(z)} [D(G(z))]$$
 (1)

EBM with variational training has a dual form to a WGAN

$$\min_{D} \max_{G} E_{x \sim p_{data}(x)} [-D(x)] + E_{z \sim p(z)} [D(G(z))] + Entropy(p_G), \ s.\ t.\ p(x) = \frac{e^{D(x)}}{\int_{x} e^{D(x)} dx}$$
(2)

• Equation (1) and (2) can amount to the same practical implementation!

Fisher Vectors

• Fisher vectors provide a way to represent an example given a probabilistic model

$$V_{x} = I^{-\frac{1}{2}} \nabla_{\theta} \log p_{\theta}(x), s.t., I = E_{x \sim p_{\theta}(x)} [\nabla_{\theta} \log p_{\theta}(x) \nabla_{\theta} \log p_{\theta}(x)^{T}]$$

Has seen successful applications in computer vision

Adversarial Fisher Vectors

Step 1: train a GAN and treat it as an EBM

• Step 2: compute the Adversarial Fisher Vector via:

$$V_{\mathbf{x}} = (diag(\mathbf{I})^{-\frac{1}{2}})U_{\mathbf{x}}$$

$$s.t.U_{\mathbf{x}} = \nabla_{\theta} D(\mathbf{x}; \theta) - \mathbf{E}_{\mathbf{z} \sim p(\mathbf{z})} \nabla_{\theta} D(G(\mathbf{z}); \theta), \mathbf{I} = \mathbf{E}_{\mathbf{z} \sim p(\mathbf{z})} [U_{G(\mathbf{z})} U_{G(\mathbf{z})}^T]$$

ullet Step 3: use V_{χ} as the representation for downstream tasks (e.g., classification)

State-of-the-art Results on Linear Classification

Method	CIFAR10	CIFAR100	Method	#Features
Examplar CNN [29]	84.3	_	Unsupervised	_
DCGAN [38]	82.8	_	Unsupervised	_
Deep Infomax [39]	75.6	47.7	Unsupervised	1024
RotNet Linear [30]	81.8	_	Self-Supervised	\sim 25K
AET Linear [32]	83.3	_	Self-Supervised	\sim 25K
D-pool-128-50000	65.3	_	Unsupervised	512
AFV-128-50000	86.2	_	Unsupervised	1.5M
AFV-128-50000 + augment	87.1	_	Unsupervised	1.5M
AFV-256-50000 + augment	88.5	_	Unsupervised	5.9M
AFV-256-50000 + C100 + augment	89.1	67.8	Unsupervised	5.9M
D + BN supervised training	92.7	70.3	Supervised	-

Checkout the Paper and Code!

