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Generative modelling

Goal

Given samples from target distribution p*, train a model py to match p*

e Maximum likelihood: Eval. training points under the model

e Adversarial training!: Eval. samples under (approximation of) p*

Lian Goodfellow et al (2014). “Generative adversarial nets". In: NIPS.
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Maximum likelihood
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Data e MLE covers full support of distribution
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Adversarial training

Adversarial training Consequences

e Production of high quality samples

e Parts of the support are dropped
Mode-dropping
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Hybrid training approach

Goal

e Explicitly optimize both dataset coverage and sample quality
e Discriminator can be seen as a learnable inductive bias

o Retain valid likelihood to evaluate support coverage

Challenges

e Tradeoff between the two objectives: need more flexibility

e Limiting parametric assumptions required for tractable MLE,
e.g. Gaussianity, conditional independence

o Often no likelihood in pixel space?

2A. Larsen et al. (2016). “Autoencoding beyond pixels using a learned similarity metric”. In: ICML.
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Going beyond conditional independence

Avoiding strong parametric assumptions
o Lift reconstruction losses into a feature space
o Deep invertible models: valid density in image space

e Retain fast sampling for adversarial training
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Maximum likelihood estimation with feature targets
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Amortized Variational inference in feature space:
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Maximum likelihood estimation with feature targets
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Maximum likelihood estimation with feature targets
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Maximum likelihood estimation with feature targets
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Amortized Variational inference in feature space:
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Adversarial training with Adaptive Density Estimation:
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Adv. update using log ratio loss

['adv(pﬁ,w) = _Epe(z) In 1
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Experiments on CIFAR10

Mﬁ} Model BPD | ISt FID|

GAN
WGAN-GP 7.9
SNGAN 74 29.3
SNGAN (g ) 82 21.7
MLE
VAE-IAF 3.1 3.87  73.51
NVP 3.5 45t 56.8t
Hybrid
Ours (v1) 3.8 82 172
Ours (v2) 3.5 6.9 289
FlowGan 4.2 3.9

Samples Real images




Samples and real images (LSUN churches, 64 x 64)

Samples @ 4.3 BPD Real images

Thank you for listening. Come see us at poster 71 :)
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