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Generative modelling

Goal

Given samples from target distribution p∗, train a model pθ to match p∗

• Maximum likelihood: Eval. training points under the model

• Adversarial training: Eval. samples under (approximation of) p∗

1



Generative modelling

Goal

Given samples from target distribution p∗, train a model pθ to match p∗

• Maximum likelihood: Eval. training points under the model

• Adversarial training: Eval. samples under (approximation of) p∗

1



Generative modelling

Goal

Given samples from target distribution p∗, train a model pθ to match p∗

• Maximum likelihood: Eval. training points under the model

• Adversarial training1: Eval. samples under (approximation of) p∗

1Ian Goodfellow et al. (2014). “Generative adversarial nets”. In: NIPS.
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Schematic illustration

Data Model
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Maximum likelihood

Data

Model

Consequences

• MLE covers full support of distribution

• Produces unrealistic samples
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Adversarial training

Mode-dropping

Consequences

• Production of high quality samples

• Parts of the support are dropped
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Hybrid training approach

Goal

• Explicitly optimize both dataset coverage and sample quality

• Discriminator can be seen as a learnable inductive bias

• Retain valid likelihood to evaluate support coverage

Challenges

• Tradeoff between the two objectives: need more flexibility

• Limiting parametric assumptions required for tractable MLE,

e.g. Gaussianity, conditional independence

• Often no likelihood in pixel space
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Hybrid training approach

Goal

• Explicitly optimize both dataset coverage and sample quality

• Discriminator can be seen as a learnable inductive bias

• Retain valid likelihood to evaluate support coverage

Challenges

• Tradeoff between the two objectives: need more flexibility

• Limiting parametric assumptions required for tractable MLE,

e.g. Gaussianity, conditional independence

• Often no likelihood in pixel space2

2A. Larsen et al. (2016). “Autoencoding beyond pixels using a learned similarity metric”. In: ICML.
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Conditional independence

Data

6



Conditional independence

Data

p(x|z) =
N∏
i

N (xi|µθ(z), σIn)
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Conditional independence

Strongly 
penalysed 
by GAN

Strongly
penalysed 
by MLE

Data
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N (xi|µθ(z), σIn)
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Going beyond conditional independence

Avoiding strong parametric assumptions

• Lift reconstruction losses into a feature space

• Deep invertible models: valid density in image space

• Retain fast sampling for adversarial training
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Maximum likelihood estimation with feature targets

Adversarial training with Adaptive Density Estimation:

Ladv(pθ,ψ) = −Epθ(z)

[
ln

D(f−1ψ (µθ(z)))

1−D(f−1ψ (µθ(z)))

]
︸ ︷︷ ︸

Adv. update using log ratio loss
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Maximum likelihood estimation with feature targets

Amortized Variational inference in feature space:

Lθ,φ,ψ(x) = −Eqφ(z|x) [ln(pθ(fψ(x)|z))] +DKL(qφ(z|x)||pθ(z))︸ ︷︷ ︸
Evidence lower bound in feature space

− ln

∣∣∣∣det ∂fψ∂x
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Maximum likelihood estimation with feature targets

Maximum
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Maximum likelihood estimation with feature targets

Maximum
Likelihood

Adv.
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Experiments on CIFAR10

Samples Real images

Model BPD ↓ IS ↑ FID ↓
GAN

WGAN-GP 7.9

SNGAN 7.4 29.3

SNGAN(R,H) 8.2 21.7

MLE

VAE-IAF 3.1 3.8† 73.5†

NVP 3.5 4.5† 56.8†

Hybrid

Ours (v1) 3.8 8.2 17.2

Ours (v2) 3.5 6.9 28.9

FlowGan 4.2 3.9
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Samples and real images (LSUN churches, 64× 64)

Samples @ 4.3 BPD Real images

Thank you for listening. Come see us at poster 71 :)
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