Residual Flows

for Invertible Generative Modeling

Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, Jörn-Henrik Jacobsen

Invertible Residual Networks (i-ResNet)

It can be shown that residual blocks

$$y = f(x) = x + g(x)$$

can be inverted by fixed-point iteration

$$x^{(i)} = y - g(x^{(i-1)})$$

and has a unique inverse (ie. invertible)

if

$$|g(x) - g(y)| < |x - y|$$

i.e. Lipschitz. Enforced with spectral normalization.

(Behrmann et al. 2019)

Applying Change of Variables to i-ResNets

lf

$$y = f(x) = x + g(x)$$

Then

$$\log p(x) = \log p(f(x)) + \log \left| \det \frac{df(x)}{dx} \right|$$
$$\log p(x) = \log p(f(x)) + \sum_{i=1}^{\infty} \frac{(-1)^{k+1}}{k} \operatorname{tr}([J_g(x)]^k)$$

Enter the "Russian roulette" estimator (Kahn, 1955). Suppose we want to estimate

$$\sum_{k=1}^{\infty} \Delta_k \qquad \qquad \text{(Require } \sum_{k=1}^{\infty} |\Delta_k| < \infty \text{)}$$

Enter the "Russian roulette" estimator (Kahn, 1955). Suppose we want to estimate

$$\sum_{k=1}^{\infty} \Delta_k$$

(Require $\sum_{k=1}^{\infty} |\Delta_k| < \infty$)

Flip a coin b with probability q.

$$\mathbb{E}\left[\Delta_1 + \right]$$

Enter the "Russian roulette" estimator (Kahn, 1955). Suppose we want to estimate

$$\sum_{k=1}^{\infty} \Delta_k \qquad \qquad \text{(Require } \sum_{k=1}^{\infty} |\Delta_k| < \infty\text{)}$$

Flip a coin b with probability **q**.

$$\mathbb{E}\left[\Delta_1 + \left[\begin{array}{cc} & & \\ & & \end{array}\right] \mathbb{1}_{b=0} + \left[\begin{array}{cc} \\ \end{bmatrix} \mathbb{1}_{b=1}\right]$$

Enter the "Russian roulette" estimator (Kahn, 1955). Suppose we want to estimate

$$\sum_{k=1}^{\infty} \Delta_k \qquad \qquad \text{(Require } \sum_{k=1}^{\infty} |\Delta_k| < \infty\text{)}$$

Flip a coin b with probability q.

$$\mathbb{E}\left[\Delta_{1} + \left[\frac{1}{1-q} \sum_{k=2}^{\infty} \Delta_{k}\right] \mathbb{1}_{b=0} + [0] \mathbb{1}_{b=1}\right]$$

Enter the "Russian roulette" estimator (Kahn, 1955). Suppose we want to estimate

$$\sum_{k=1}^{\infty} \Delta_k \qquad \qquad \text{(Require } \sum_{k=1}^{\infty} |\Delta_k| < \infty \text{)}$$

Flip a coin b with probability q.

$$\mathbb{E}\left[\Delta_{1} + \left[\frac{1}{1-q}\sum_{k=2}^{\infty}\Delta_{k}\right]\mathbb{1}_{b=0} + [0]\mathbb{1}_{b=1}\right]$$

$$= \Delta_{1} + \left[\frac{1}{1-q}\sum_{k=2}^{\infty}\Delta_{k}\right](1-q)$$

$$= \sum_{k=1}^{\infty}\Delta_{k}$$
Has probability evaluated in features.

Has probability q of being evaluated in **finite** time.

If we repeatedly apply the same procedure *infinitely many times*, we obtain an unbiased estimator of the infinite series.

$$\sum_{k=1}^{\infty} \Delta_k = \mathbb{E}_{n \sim p(N)} \left[\sum_{k=1}^n \frac{\Delta_k}{\mathbb{P}(N \geq k)} \right]$$
 Computed in finite time

Directly sample the first successful coin toss.

k-th term is weighted by prob. of seeing >= k tosses.

Computed in **finite** time with **prob. 1**!!

Residual Flow:

$$\log p(x) = \log p(f(x)) + \mathbb{E}_{n,v} \left[\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \frac{v^{T} [J_g(x)]^{k} v}{\mathbb{P}(N \ge k)} \right]$$

Decoupled Training Objective & Estimation Bias

--- i-ResNet (**Biased** Train Estimate) --- Residual Flow (**Unbiased** Train Estimate) --- Residual Flow (Actual Test Value)

Constant-Memory Backpropagation

Naive gradient computation:

$$\mathbb{E}_{n,v} \left[\sum_{k=1}^{n} \alpha_k \frac{\partial v^T [J_g(x)]^k v}{\partial \theta} \right] \qquad \text{1. Estimate}$$
 2. Differentiate

Alternative (Neumann series) gradient formulation:

$$\mathbb{E}_{n,v}\left[\left(\sum_{k=1}^{n}\alpha_k v^T [J_g(x)]^k\right) \frac{\partial J_g(x)v}{\partial \theta}\right] \qquad \text{ Differentiate 2. Estimate}$$

1. Analytically

Don't need to store random number of terms in memory!!

Density Estimation Experiments

Contribution Summary:

- Unbiased estimator of log-likelihood.
- Memory-efficient computation of log-likelihood.
- LipSwish activation function [not discussed in talk].

Model	MNIST	CIFAR-10	ImageNet 32	ImageNet 64	CelebA-HQ 256
Real NVP (Dinh et al., 2017)	1.06	3.49	4.28	3.98	_
Glow (Kingma and Dhariwal, 2018)	1.05	3.35	4.09	3.81	1.03
FFJORD (Grathwohl et al., 2019)	0.99	3.40			
Flow++ (Ho et al., 2019)	_	3.29 (3.09)	— (3.86)	— (3.69)	
i-ResNet (Behrmann et al., 2019)	1.05	3.45	_	_	_
Residual Flow (Ours)	0.970	3.280	4.010	3.757	0.992

Density Estimation Experiments

Contribution Summary:

- Unbiased estimator of log-likelihood.
- Memory-efficient computation of log-likelihood.
- LipSwish activation function [not discussed in talk].

Training Setting	MNIST	CIFAR-10	CIFAR-10 [†]
$\overline{i-ResNet} + ELU$	1.05	3.45	3.66~4.78
${\sf Residual\ Flow\ +\ ELU}$	1.00	3.40	3.32
${\sf Residual\ Flow} + {\sf LipSwish}$	0.97	3.39	3.28

Table: Ablation results. †Larger network.

Qualitative Samples

CelebA: Data Residual Flow

| CelebA: | Data | CelebA: |

CIFAR10:

Model	CIFAR10 FID
PixelCNN*	65.93
PixelIQN*	49.46
i-ResNet	65.01
Residual Flow	46.37
DCGAN*	37.11
WGAN-GP*	36.40

Qualitative Samples

<u>CelebA:</u> Data Residual Flow

CelebA-HQ 256x256:

Model	CIFAR10 FID
PixelCNN*	65.93
PixelIQN*	49.46
i-ResNet	65.01
Residual Flow	46.37
DCGAN*	37.11
WGAN-GP*	36.40

Thanks for Listening!

Code and pretrained models: https://github.com/rtqichen/residual-flows

Jens Behrmann

David Duvenaud

Jörn-Henrik Jacobsen