Invertible Convolutional
Flow



Two ways to improve expressivity of normalizing flow:

> Invertible convolution filter

> Invertible nonlinear gates



Circular Convolution

Linear convolution of two sequences when one is padded DR R
cyclically
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Jacobian of this convolution forms a circulant matrix ¢ i1 9
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Its eigenvalues are equal to the DFT ]\?f w, SO |
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The circular convolution-multiplication property Jo=| '
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Inverse operation (deconvolution)
zr(n) = wr'(n) yr(n)

These can be evaluated in O(N logN) time in the frequency
domain, using FFT algorithms.




Symmetric Convolution

Using even-symmetric expansion . el o
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The convolution-multiplication property holds for DCT R R
of operands
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inversion (deconvolution) can be performed efficiently
in O(N logN).



data-adaptive invertible convolution flow

Let x, and x, are the disjoint parts of the input x.

A data-adaptive convolution is defined by convolving x, with an arbitrary
function of x,

fe(T2; 1) = w(T1) * T2

Using any of the invertible convolutions, this transform is invertible with
cheap inversion and cheap log-det-Jacobian computation



Pointwise nonlinear bijectors

log-det-Jacobian term in the log-likelihood equation can be
interpreted as a regularizer.

If we would like to encourage some desirable statistical
properties, formulated by a regularizer p(y), in intermediate
layers of a flow-based model, we can do so by carefully
designing nonlinearities y=f(x).

f(x) is obtained by solving the differential equation

KL

dy dy

For l1 regularization, inducing sparsity, this leads to the S-Log
gate defined as

fa(x) = % In(a|z| + 1)
f;l(y) — M(ealm —1)
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S-Log gate which is differentiable and has unbounded
domain and range by construction



Convolutional coupling flow (CONF)

e Combining the invertible convolution, element-wise multiplication and
nonlinear bijectors, we achieve a more expressive flow in the coupling

form:
Y = I
{yz = for(8(21) © folw(xy) * 22) ) + t(x1)
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