Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks

Mahyar Fazlyab, Alexander Robey Hamed Hassani, Manfred Morari, George J. Pappas

NeurIPS 2019

Lipschitz Constant of Neural Networks

▶ **Definition:** the *smallest* L_2 such that

$$||f(x) - f(y)||_2 \le L_2 ||x - y||_2 \quad \forall x, y \in \mathbb{R}^{n_x}$$

where $f : \mathbb{R}^{n_x} \to \mathbb{R}^{n_y}$ is represented by a NN

- **Why important:** tight upper bound on L_2 useful in
 - Robustness certification of classifiers
 - Closed-loop stability analysis of systems with neural network controllers
 - Robust training
 - Generalization bounds
- ▶ **Challenge:** finding L_2 is NP-hard

Robustness Certification of Classifiers

Lower Lipschitz constant implies more robustness

Estimation of Lipschitz Constant

Feed-forward fully-connected neural network

$$x^{k+1} = \phi(W^k x^k + b^k)$$
 $k = 0, \dots, \ell - 1$ $f(x^0) = W^{\ell} x^{\ell} + b^{\ell}$

- ▶ Product of norms $(\prod_{k=0}^{\ell} \|W^k\|_2)$ is overly conservative
- ▶ We improve this bound by orders of magnitude using convex optimization
 - Example: a randomly generated NN with 8 layers:

Product of Norms
$$\approx 9571 (= \prod_{k=0}^{\ell} \|W^k\|_2)$$

Our Bound ≈ 104

- ► Current Status: scales to small CNNs (10k neurons)
- ► Future Work: scale to large CNNs (100k neurons)

Our Main Idea

Transform NN into a family of Incrementally Quadratically Constrained Linear Networks

▶ LipSDP: Estimating Lipschitz constants of NNs via Semidefinite Programming

Tightness of the Bounds

- ▶ Platform: MATLAB, CVX toolbox, and MOSEK on a 9-core CPU with 16GB of RAM
- Methods:
 - Variants of LipSDP: LipSDP-Network, LipSDP-Neuron, LipSDP-Layer
 - CPLip: Combettes, Patrick L., and Jean-Christophe Pesquet. "Lipschitz Certificates for Neural Network Structures Driven by Averaged Activation Operators." arXiv preprint arXiv:1903.01014(2019).
 - SeqLip: Virmaux, Aladin, and Kevin Scaman. "Lipschitz regularity of deep neural networks: analysis and efficient estimation." Advances in Neural Information Processing Systems. 2018.

• Our bounds are the tightest in the literature

Experiments on MNIST

► Training Methods:

- Adam: Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980(2014).
- LP-Train: Wong, Eric, and J. Zico Kolter. "Provable defenses against adversarial examples via the convex outer adversarial polytope." arXiv preprint arXiv:1711.00851(2017).
- PGD-Train: Madry, Aleksander, et al. "Towards deep learning models resistant to adversarial attacks." arXiv preprint arXiv:1706.06083(2017).

Thank You!