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Lipschitz Constant of Neural Networks

» Definition: the smallest Ly such that
1f(@) = fW)ll2 < Laflz — yll2 Vz,y € R™

where f: R"™ — R™v is represented by a NN

» Why important: tight upper bound on Ly useful in
— Robustness certification of classifiers
— Closed-loop stability analysis of systems with neural network controllers
— Robust training
— Generalization bounds

» Challenge: finding Lo is NP-hard



Robustness Certification of Classifiers
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Lower Lipschitz constant implies more robustness



v

v

v

v

Estimation of Lipschitz Constant

Feed-forward fully-connected neural network
e = p(Whak %) k=0, -1 f(a°) =W+
Product of norms (Hi:o |[W¥||2) is overly conservative

We improve this bound by orders of magnitude using convex optimization
— Example: a randomly generated NN with 8 layers:

4
Product of Norms ~ 9571(= [ [ [W*|2)
k=0

Our Bound =~ 104

Current Status: scales to small CNNs ( 10k neurons)
Future Work: scale to large CNNs ( 100k neurons)



Our Main ldea

» Transform NN into a family of Incrementally Quadratically Constrained Linear Networks

Original NN IQCLN
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Certificate for the original NN LipSDP

LYNN < L;QCLN(Q*) infgeo L;QCLN(Q)

» LipSDP: Estimating Lipschitz constants of NNs via Semidefinite Programming



Tightness of the Bounds

» Platform: MATLAB, CVX toolbox, and MOSEK on a 9-core CPU with 16GB of RAM
> Methods:
— Variants of LipSDP: LipSDP-Network, LipSDP-Neuron, LipSDP-Layer
— CPLip: Combettes, Patrick L., and Jean-Christophe Pesquet. " Lipschitz Certificates for Neural
Network Structures Driven by Averaged Activation Operators.” arXiv preprint
arXiv:1903.01014(2019).
— SeqLip: Virmaux, Aladin, and Kevin Scaman. " Lipschitz regularity of deep neural networks:
analysis and efficient estimation.” Advances in Neural Information Processing Systems. 2018.

Comparison of LipSDP to other methods
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e Our bounds are the tightest in the literature



Experiments on MNIST

» Training Methods:
— Adam: Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic
optimization.” arXiv preprint arXiv:1412.6980(2014).
— LP-Train: Wong, Eric, and J. Zico Kolter. " Provable defenses against adversarial examples via
the convex outer adversarial polytope.” arXiv preprint arXiv:1711.00851(2017).
— PGD-Train: Madry, Aleksander, et al. " Towards deep learning models resistant to adversarial
attacks.” arXiv preprint arXiv:1706.06083(2017).

Regular vs. Robust Training on MNIST Misclassification histogram for regular and robust training
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Thank You!



