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Why learning cross-lingual representations?
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Cross-lingual language models




Mult. Masked Language Modeling (MLM)

Similar to BERT, we pretrain a Transformer model with MLM but in many languages:
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Multilingual Masked language modeling pretraining

.. multilingual representations emerge from a single MLM trained on many languages.

Devlin et al. — BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding (+ mBERT)



Translation Language Modeling (TLM)

Multilingual MLM is unsupervised, but we leverage parallel data with TLM:
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Translation language modeling (TLM) pretraining

.. to encourage the model to leverage cross-lingual context when making predictions.
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Results on XLU benchmarks



Results on Cross-lingual Classification (XNLI)

The pretrained encoder is fine-tuned on the English Average XNLI accuracy on the 15 languages of XNLI
XNLI(*) training data and then tested on 15 languages for zero-shot cross-lingual classification
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(*) Conneau et al. — XNLI: Evaluating Cross-lingual Sentence Representations (EMNLP 2018) 7



Results on Unsupervised Machine Translation

Initialization is key in unsupervised MT to bootstrap the iterative BT process

Embedding layer initialization
is essential for neural unsupervised MT (*)
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Full Transformer model initialization
significantly improves performance (+7 BLEU)
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(*) Lample et al. — Phrase-based and neural unsupervised machine translation (EMNLP 2018) 8
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Results on Supervised Machine Translation

We also show the importance of pretraining for generation

* Pretraining both the encoder and
decoder improves BLEU score No pretraining

* MLM better than LM pretraining

Full model pretrained (CLM)

* Back-translation + pretraining
leads to the best BLEU score Full model pretrained (MLM)
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* Pretraining is more important
when supervised data is small

m without back-translation m with back-translation
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Conclusion

* Cross-lingual language model pretraining is very effective for XLU
* New state of the art for cross-lingual classification on XNLI
* Reduces the gap between unsupervised and supervised MT

* Recent developments have improved XLM/mBERT models



Thank you!

Code and models available at github.com/facebookresearch/XLM

Lample & Conneau — Cross-lingual Language Model Pretraining (NeurlPS 2019)
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http://github.com/facebookresearch/XLM

