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CPM-Nets: CPM-Nets: Cross Partial Multi-View Networks

Multi-View Classification & Theory
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Challenges of
Classification on Partial Multi-View Data

O For complex view-missing, how to avoid manually
preprocessing (e.g., completion/discarding/grouping)?

® Large number of views, and view-missing patterns;

® The view-missing pattern of test sample is novel,
O How to guarantee the sufficiency in using partial multiple views?
O How to scale for large-scale & small-sample-size cases?
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Our Algorithm for
Classification on Partial Multi-View Data

1. Flexibility: Samples with arbitrary view-missing patterns;
Complete-Representation: Compact with full information;

3. Structured-Representation: Simplify classifier for
Interpretability;
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Framework of CPM-Nets
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Framework of CPM-Nets
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Theoretical Analysis

Proposition 2.1 (Versatility for the Multi-View Representation from Eq. (5)) There exists a solu-
tion (with respect to latent representation h) to Eq. which holds the versatility.

Proof 2.1 The proof for proposition|2.1|is as follow. Ideally, according to Eg. , there exists
x(") = f,(h; E).E.”}}. where f,(-) is the mapping from h to x'). Hence, ¥ o(-) with y'*) = p(x¥)),
there exists a mapping 1)(-) satisfying y'v) = ¥ (h) by defining () = w(f,(-)). This proves the
versatility of the latent representation h based on multi-view observations {x'V), ... xV)},

In practical case, it is usually difficult to quﬂmﬂfee the exact versatility for latent repre E‘Eﬂmr‘mrl then

the goal is to minimize the error e, = ZU_l |(h) — p(x)||? (ie. ZU Np(fo(h; @) —

[p[x{z;jj ||2) which is inversely proportional to the degree of versatility. Fortunately, it is easy to show

that Ke, with e, = E:;l || fo(h; E')E.“:') — x\"||? from Eq. (5) is the upper bound of e, if () is
Lipschitz continuous with K being the Lipschitz constant. ]
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Comparison with Completion Methods
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B CRA (CVPR17) [1];

B Mean: Complete the
missing values with the
mean of the observed
In the same class.

[1] Missing modalities imputation via
cascaded residual autoencoder. CVPR, 2017.

CuUB Animal Handwritten
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Visualization under Missing Rate: n = 0.5
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Conclusion

« Complete Representation: Information preservation &
flexibility for arbitrary view-missing pattern;

 Nonparametric Classifier: Nonparametric classifier for
structured representation,;

* Theoretical Guarantee: Strict guarantee for ideal case
and bound for practical case,

* Applicable: Large-scale/Small-Sample-Size
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