Convergence of Adversarial Training in Overparametrized Neural Networks

Ruiqi Gao*,1, Tianle Cai*,1, Haochuan Li², Liwei Wang¹, Cho-Jui Hsieh³, Jason D. Lee⁴

Peking University, ² MIT, ³ UCLA, ⁴ Princeton University * Joint first author.

NeurIPS 2019

Introduction

Deep learning models are vulnerable to adversarial attacks.

Figure: Szegedy et al. (2014)

Introduction(cont.)

 Most common white-box defenses are based on adversarial training, that is, at each step we perform gradient descent on the loss evaluated at the adversarially perturbed data.

Introduction(cont.)

- Most common white-box defenses are based on adversarial training, that is, at each step we perform gradient descent on the loss evaluated at the adversarially perturbed data.
- We give the first proof of convergence of adversarial training based on sufficiently wide networks.

Introduction(cont.)

- Most common white-box defenses are based on adversarial training, that is, at each step we perform gradient descent on the loss evaluated at the adversarially perturbed data.
- We give the first proof of convergence of adversarial training based on sufficiently wide networks.
- Our analysis leverages recent work on Neural Tangent Kernel (NTK), combined with motivation from online-learning, and the expressiveness of the NTK kernel in the ℓ_{∞} -norm.

Formalizing the problem:

• Neural network f(W, x).

Formalizing the problem:

- Neural network f(W, x).
- Adversarial attack (PGD, FGSM, etc.) $\mathcal{A}(W,x) = x' \in \mathcal{B}(x)$ ($\mathcal{B}(x)$ is the allowed perturbation set e.g. ℓ_2 or ℓ_∞ ball centered at x.)

Formalizing the problem:

- Neural network f(W, x).
- Adversarial attack (PGD, FGSM, etc.) $\mathcal{A}(W,x) = x' \in \mathcal{B}(x)$ ($\mathcal{B}(x)$ is the allowed perturbation set e.g. ℓ_2 or ℓ_∞ ball centered at x.)
- Adversarial training directly aims to minimize the surrogate loss

$$L_{\mathcal{A}}(W) = \frac{1}{n} \sum_{i=1}^{n} loss(f(W, \mathcal{A}(W, x_i)), y_i),$$

that is, the loss evaluated at the perturbed data generated by A.

Formalizing the problem:

- Neural network f(W, x).
- Adversarial attack (PGD, FGSM, etc.) $\mathcal{A}(W,x) = x' \in \mathcal{B}(x)$ ($\mathcal{B}(x)$ is the allowed perturbation set e.g. ℓ_2 or ℓ_∞ ball centered at x.)
- Adversarial training directly aims to minimize the surrogate loss

$$L_{\mathcal{A}}(W) = \frac{1}{n} \sum_{i=1}^{n} loss(f(W, \mathcal{A}(W, x_i)), y_i),$$

that is, the loss evaluated at the perturbed data generated by A.

While the true robust loss is

$$L_*(W) = \frac{1}{n} \sum_{i=1}^n \max_{x_i' \in \mathcal{B}(x_i)} loss(f(W, x_i'), y_i).$$

Setting (cont.)

• Fully-connected ReLU network, input dimension *d*, *H* hidden layers with width *m*.

Setting (cont.)

- Fully-connected ReLU network, input dimension d, H hidden layers with width m.
- Due to technical issues, we slightly modify the algorithm to *projected* adversarial training on a local region around initialization

$$B(R) = \left\{ W : \left\| W^{(h)} - W_0^{(h)} \right\|_F \le \frac{R}{\sqrt{m}}, h = 1, \dots, H \right\}.$$

Main Result

Theorem (Bounding the surrogate loss with the optimal robust loss)

Suppose $m \ge \text{poly}(R, H, d, 1/\epsilon)$. With suitable assumptions and some T steps of training, we achieve

$$\min_{t=1,\cdots,T} L_{\mathcal{A}}(W_t) \leq \min_{W \in \mathcal{B}(R)} L_*(W) + \epsilon.$$

Corollary

Assume the network has approximation power $\min_{W \in B(R)} L_*(W) \le \epsilon$, then $\min_{t=1,\dots,T} L_A(W_t) \le 2\epsilon$.

Additional results

• For two-layer networks we derive a complete approximation result using random feature analysis.

Additional results

- For two-layer networks we derive a complete approximation result using random feature analysis.
- For two-layer networks, we derive a similar result without the need of projection.

Additional results

- For two-layer networks we derive a complete approximation result using random feature analysis.
- For two-layer networks, we derive a similar result without the need of projection.
- Why wide networks? We also derive an auxiliary VC-dimension result that implies achieving adversarial robustness requires more model capacity, e.g. width.

Thank you!

Welcome to our poster #115 for details and discussions!

Contact

Ruiqi Gao (grq@pku.edu.cn) and Tianle Cai (caitianle1998@pku.edu.cn) are applying for Ph.D. this year!

Please contact if you are interested!