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N
Introduction

Deep learning models are vulnerable to adversarial attacks.

(a) Schoolbus (b) Perturbation (c) Ostrich
Figure: Szegedy et al. (2014)
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Introduction(cont.)

@ Most common white-box defenses are based on adversarial training, that is, at each
step we perform gradient descent on the loss evaluated at the adversarially perturbed
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Introduction(cont.)

@ Most common white-box defenses are based on adversarial training, that is, at each
step we perform gradient descent on the loss evaluated at the adversarially perturbed

data.
@ We give the first proof of convergence of adversarial training based on sufficiently

wide networks.
@ Our analysis leverages recent work on Neural Tangent Kernel (NTK), combined with
motivation from online-learning, and the expressiveness of the NTK kernel in the

{~o-norm.
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Setting

Formalizing the problem:
@ Neural network f(W, x).
@ Adversarial attack (PGD, FGSM, etc.) A(W,x) = x" € B(x)
(B(x) is the allowed perturbation set e.g. ¢, or ., ball centered at x.)
@ Adversarial training directly aims to minimize the surrogate loss

Z/oss (W, AW, x:)), ),

that is, the loss evaluated at the perturbed data generated by A.
@ While the true robust loss is

L.(W)== max loss(f(W,x}), yi).

n ) X{EB(X,‘)
i=1
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Setting (cont.)

@ Fully-connected RelLU network, input dimension d, H hidden layers with width m.
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-
Setting (cont.)

@ Fully-connected RelLU network, input dimension d, H hidden layers with width m.

@ Due to technical issues, we slightly modify the algorithm to projected adversarial
training on a local region around initialization

R
B(R):{W: HW(”)—WO(")HFS\/—E,hzl,m ,H}.
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Main Result

Theorem (Bounding the surrogate loss with the optimal robust loss)

Suppose m > poly(R, H,d,1/¢). With suitable assumptions and some T steps of
training, we achieve

i LW, < in L. (W .
in La(We) < | min L(W) + €

Corollary

Assume the network has approximation power miny cp(r) L. (W) <, then
mint:L.., , T LA( Wt) S 26.
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N
Additional results

@ For two-layer networks we derive a complete approximation result using random
feature analysis.

@ For two-layer networks, we derive a similar result without the need of projection.

@ Why wide networks? We also derive an auxiliary VC-dimension result that implies
achieving adversarial robustness requires more model capacity, e.g. width.
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Thank you!

Welcome to our poster #115 for details and discussions!

Contact

Ruigi Gao (grq@pku.edu.cn) and Tianle Cai (caitianle1998@pku.edu.cn) are applying for
Ph.D. this year!

Please contact if you are interested!
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