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Introduction

Deep learning models are vulnerable to adversarial attacks.
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Figure: Szegedy et al. (2014)
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Introduction(cont.)

Most common white-box defenses are based on adversarial training, that is, at each
step we perform gradient descent on the loss evaluated at the adversarially perturbed
data.

We give the first proof of convergence of adversarial training based on sufficiently
wide networks.

Our analysis leverages recent work on Neural Tangent Kernel (NTK), combined with
motivation from online-learning, and the expressiveness of the NTK kernel in the
`∞-norm.
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Setting

Formalizing the problem:

Neural network f (W , x).

Adversarial attack (PGD, FGSM, etc.) A(W , x) = x ′ ∈ B(x)
(B(x) is the allowed perturbation set e.g. `2 or `∞ ball centered at x .)
Adversarial training directly aims to minimize the surrogate loss

LA(W ) =
1

n

n∑
i=1

loss(f (W ,A(W , xi)), yi),

that is, the loss evaluated at the perturbed data generated by A.
While the true robust loss is

L∗(W ) =
1

n

n∑
i=1

max
x ′i ∈B(xi )

loss(f (W , x ′i ), yi).
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Setting (cont.)

Fully-connected ReLU network, input dimension d , H hidden layers with width m.

Due to technical issues, we slightly modify the algorithm to projected adversarial
training on a local region around initialization

B(R) =

{
W :

∥∥∥W (h) −W
(h)
0

∥∥∥
F
≤ R√

m
, h = 1, · · · ,H

}
.
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Main Result

Theorem (Bounding the surrogate loss with the optimal robust loss)

Suppose m ≥ poly(R ,H , d , 1/ε). With suitable assumptions and some T steps of
training, we achieve

min
t=1,··· ,T

LA(Wt) ≤ min
W∈B(R)

L∗(W ) + ε.

Corollary

Assume the network has approximation power minW∈B(R) L∗(W ) ≤ ε, then
mint=1,··· ,T LA(Wt) ≤ 2ε.
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Additional results

For two-layer networks we derive a complete approximation result using random
feature analysis.

For two-layer networks, we derive a similar result without the need of projection.

Why wide networks? We also derive an auxiliary VC-dimension result that implies
achieving adversarial robustness requires more model capacity, e.g. width.
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Thank you!

Welcome to our poster #115 for details and discussions!

Contact

Ruiqi Gao (grq@pku.edu.cn) and Tianle Cai (caitianle1998@pku.edu.cn) are applying for
Ph.D. this year!
Please contact if you are interested!
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