Optimal Stochastic and Online Learning with Individual
lterates

Yunwen Lei*?2, Peng Yang!, Ke Tang! and Ding-Xuan Zhou®

1Southern University of Science and Technology
2Technical University of Kaiserslautern
3City University of Hong Kong

{leiyw, yangp, tangk3}@sustech.edu.cn mazhou@cityu.edu.hk

December 11, 2019



Background

Problem: Want to solve optimization problem of composite structure:

min o(w) = E.[f(w, 2)] + r(w), 1)
where f : R? x Z +s R (loss), r : R — R, (regularizer) are convex.
Data: z = {z} drawn i.i.d. from a measure defined over Z = X x )

Instantiations: SVMs, Logistic Regression, Lasso, Ridge Regression, etc.

Optimal model: w* = argminy,crs d(w)



Stochastic Composite Mirror Descent
A strongly convex mirror map W : RY — R to induce a Bregman distance
~ ~ ~ ~ o ~
Dy (w, W) := W(w) — [W(W) + (w — W, VV(W))] > = |w — ]

Idea: separate data-fitting term and regularizer

Wy =arg “',gﬂgd (W —wy, f'(wy, ;) +r(w) + 0, Dy(w,w;)  (2)
—_————
first-order approximation of f(w, z;) at w, stabilizer

A framework covering many algorithms: (Nemirovsky and Yudin, 1983; Beck and Teboulle, 2003;

Zinkevich, 2003; Zhang, 2004; Bach and Moulines, 2013; Bottou et al., 2018; Duchi et al., 2010; Shalev-Shwartz et al., 2011;
Hazan and Kale, 2014)

@ SGD
@ Stochastic Proximal Gradient Descent

@ Stochastic Mirror Descent

keep r intact and approximate f by first-order approximation )




Existing Work

Problem: How to identify a model from sequence {w,}] ;
@ LAST: output the last single iterate (Shamir and Zhang, 2013)
@ UNI-AVE: average all iterates with uniform weights
@ WEI-AVE: weighted average with weight t 4+ 1 for w; (Lacoste-Julien et al., 2012)
@ SUFFIX: uniform average of the last half of SGD iterates (Rakhlin et al., 2012)
@ RAND: a random iterate drawn from {w;}]_,

Problems:
@ either suboptimal in the sense of logarithmic factors

@ or requires averaging of iterates (sparsity destroyed)

Algorithm with optimal rate, sparsity and good practical behavior?




Motivation and ldea

Key inequality measuring one-step progress:

E[¢(Wt)_¢(w)] < n?lE[Dw(W,Wt) - D\U(W,Wt+1)] +n:C. (3)

@ If set w = w* and show E[Dy(w*,w;) — Dy(w*,w¢,1)] = O(n?), then
optimal convergence E[¢(w¢)] — ¢p(w™) = O(n;)

since 1, = 1/4/t for convex and 7, = 1/t for strongly-convex setting.

@ By non-negativity of Bregman distance, we find T* € {T,...,2T — 1} with

Dy(w*,wr+) — Dy(w*,wr-y1) < 71 Dy (w™,wr). (4)
—_——

:O(Tr]%.)

@ w* replaced by a surrogate wr with E[¢p(w7)] — ¢(w*) = O(n7)



Algorithm

@ SCMDI: Stochastic Composite Mirror Descent with Individual Iterates

Algorithm 1: SCMDI

Input: {n:}+,wy and T.
1 fort=1,2to T —1do
2 | calculate weyq by (2)

3 set Wt as an average of iterates
afort=T,T+1to2T7T —1do

5 calculate w1 by (2)

6 AR Dw(V_\IT,Wt)—Dw(\TVT,Wt+1)
7 if A < T 1Dy(Wr,wr) then

8 | Tt wre —w,

@ OCMDI: Online Composite Mirror Descent with Individual Iterates

» update average at 2f-th iteration, t =1,2,...
» no information of T required



Theory

Assumptions 1: the existence of A and B > 0 such that
IF'(w, 2)|2 < Af(w,z)+ B and ||F'(w)|? < Ar(w) + B.
Convex case: If Assumption 1 and 7, < 1/4/t, then
Elo(wr-)] — o(w") = O(T~%).
Strongly convex case: If Assumption 1 and 7; < 1/t, then

E[p(wr-)] — ¢(w*) = O(T ).



Tomography Reconstruction

@ Objective function: ¢(w) = L||Aw — y||3

1
“n

» AcR"™9 s a CT-measurement matrix
» y € R" is a noisy measurement vector

@ w* is a sparse image.

@ SCMD with (randomized sparse Kaczmarz algorithm)
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Welcome to East Exhibition Hall B + C #164 for more
details

Thank You!
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