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Model Selection in Statistical Learning
Setup
● Data {(xi, yi)}ni=1 ∼D
● Nested function classes F1 ⊂ F2 ⊂ . . . ⊂ FM

● (Assume Bayes optimal predictor f⋆ ∈ Fm⋆ )

Model selection guarantee: Learner f̂n satisfies

R(f̂n) ≤ R(f⋆) +
√

comp(Fm⋆)
n

⋅ log(m⋆/δ).

● Adapts to complexity of Bayes predictor f⋆!
● Algorithmic principle: Structural risk minimization [Vapnik’92].

Goal: Achieve similar guarantee in online learning with
partial information (contextual bandits).
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Is this even possible?

● Statistical learning : Structural risk minimization.
● Online learning : Exponential weights w/ prior, LR tuning.
● Contextual bandits :

● No positive results known:
● Even for specific function classes.
● Even if we’re fine with, e.g., T 2/3-type rates.

● Standard algorithmic approaches fail (cf. paper for details).

Our result
Model selection for linear contextual bandits.
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(Linear) Contextual Bandits
For t = 1, . . . , T :
1. Observe xt ∈ X
2. Take action at ∈ [K]
3. Incur loss ℓt(at) ∈ [0,1]

Regret(T ) =
T

∑
t=1

ℓt(at) −
T

∑
t=1

ℓt(π⋆(xt))

Linear setup:
Feature maps: {ϕm}m∈[M], ϕm(x, a) ∈ Rdm .

Realizability: ∃θ⋆ ∈ Rdm⋆ , s.t. E[ℓ(a) ∣ x] = ⟨θ⋆, ϕm⋆(x, a)⟩.
(Optimal policy is π⋆(xt) = argmaxa ⟨θ⋆, ϕm⋆(x, a)⟩.)

With m⋆ known, can get Õ(
√
dm⋆T log(K)) regret.

[ChuLiReyzinSchapire’11]
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Our Result

Main Theorem

Without knowing m⋆, we get:

Regret ≤ Õ(T 2/3(Kdm⋆)1/3).

We can also achieve:

Regret ≤ Õ(
√
KTdm⋆ +K1/4T 3/4).

*Stochastic setting, some technical assumptions required (see paper).

Model selection possible whenever problem is learnable!



Key Idea

Estimate square loss gap between two classes (di < dj )

Ei,j ∶= Ex,a (⟨θ⋆i , ϕi(x, a)⟩ − ⟨θ⋆j , ϕj(x, a)⟩)
2

Plug-in estimator has error dj/n.

Lemma: New estimator with error
√
dj/n + dj/m.

● n exploration samples, m unlabeled samples.
● Refines and generalizes [Dicker’14,KongValiant’18]

.

Algorithm:
Run CB alg with di, mix in exploration, test if Ei,j > 0, switch to dj if so.

Note: Cannot run LinUCB, since di might not be realizable.
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Summary

● First model selection guarantee for contextual bandits
● Key technique: fast rates for estimating best-in-class loss.
● Open problems:

● Can we achieve similar model selection guarantees for general
policy classes?

● Can we achieve
√
dm⋆T for all dm⋆?
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