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Goal: Achieve similar guarantee in online learning with
partial information (contextual bandits).
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® Standard algorithmic approaches fail (cf. paper for details).

Our result
Model selection for linear contextual bandits.
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1. Observe ;€ X
2. Take action a; € [ K]
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Linear setup:
Feature maps: {¢m }imerr]s dm (2, a) € R%m.
Realizability: 30* € R4, s.t. E[{(a) | 2] = (0", ¢+ (z, ).

(Optimal policy is 7* (z¢) = argmax, (0%, ¢+ (2,a)).)

With m* known, can get O(1/d,,-Tlog(K)) regret.
[ChuLiReyzinSchapire’11]



Our Result

Main Theorem

Without knowing m*, we get:
Regret < O(T*3(Kd,-)'/?).
We can also achieve:

Regret < O(\/KTd,,- + K/4T3/%).

J

*Stochastic setting, some technical assumptions required (see paper).

Model selection possible whenever problem is learnable!
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Ei,j = Ez,a ((61 7¢i(xv CL)) - <03 ’ ij(,f, a)))
Plug-in estimator has error d;/n.

Lemma: New estimator with error \/d;/n + d;/m.
® n exploration samples, m unlabeled samples.

® Refines and generalizes [Dicker’14,KongValiant’18].

Algorithm:
Run CB alg with d;, mix in exploration, test if £; ; > 0, switch to d; if so.

Note: Cannot run LinUCB, since d; might not be realizable.



Summary

¢ First model selection guarantee for contextual bandits
e Key technique: fast rates for estimating best-in-class loss.

¢ Open problems:

¢ Can we achieve similar model selection guarantees for general
policy classes?

* Can we achieve \/d,,-T for all d,,,~?
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