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Background: Multi-armed Bandits (MAB)

S
sequential decision making -
time horizon T
action space: K arms
random reward for each action

target: maximize the cumulative
rewards
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Partial Information in the “Space” Domain

Space Domain: Bandit Feedback
Only the reward of the pulled arm is revealed.
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Batched Multi-armed Bandit

Batched MAB problem:
@ limited rounds of actively querying data
@ split the time horizon into M batches

@ rewards revealed simultaneously at the end of each batch

4/16



Batched Multi-armed Bandit

Batched MAB problem:
@ limited rounds of actively querying data
@ split the time horizon into M batches

@ rewards revealed simultaneously at the end of each batch

=~

Clinical trial Crowdsourcing Reinforcement learning

4/16



Batched Multi-armed Bandit

Batched MAB problem:
@ limited rounds of actively querying data
@ split the time horizon into M batches

@ rewards revealed simultaneously at the end of each batch

=~

Clinical trial Crowdsourcing Reinforcement learning




Batched Multi-armed Bandit

Batched MAB problem:
@ limited rounds of actively querying data
@ split the time horizon into M batches

@ rewards revealed simultaneously at the end of each batch
=~
)
Clinical trial Crowdsourcing Reinforcement learning

batch learning
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Batched MAB problem:
@ limited rounds of actively querying data
@ split the time horizon into M batches

@ rewards revealed simultaneously at the end of each batch
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Partial Information in the “Time” Domain

Time Domain: Limited Rounds of Adaptivity

Feedbacks are only revealed in batches.
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Mathematical Formulation

@ time horizon T, number of arms K
@ stochastic MAB: pulling arm i gives reward r; ~ N(u(i), 1)
@ best arm p* = max;¢[k] p) suboptimality gap A; = p* — ()

@ policy 7 m; determined by the observed rewards before current batch

R(r) = i (" = ).

t=1

Batch constraint represented by agrid t1 < hh < --- <ty =T
e static grid: 7 = {t1,---, tpm} fixed in advance
@ adaptive grid: the next grid point determined by historic data
o task: design policy + grid
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Tight analysis of stochastic MAB [Vog'60, LR85, AB'09]:

E[R(z})] < C- VKT
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Tight analysis of stochastic MAB [Vog'60, LR85, AB'09]:

E[R(z})] < C- VKT

i* !

Minimax Regret

Rmin-max(K, M, T) = inf  sup E[R(n)]
™7 |Alle<vK

Problem-dependent Regret

Roro-dep(K, M, T) = inf sup A - sup E[R()]
mTA>0  aefojula, VK]
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Rpro—dep(Ka T7 T) @(K |Og( T))

Required number of batches [ACBF'02, CBDS'13]:
Rmin-max(K7 log T, T) = é( v KT) (UCBQ)
Runin-max(K loglog T, T) = ©(VKT) (switching cost)

Two-armed case with static grid [PRCS'16]:

~ 1
Rmin-max(z, M, T) = @(TQ_Ql—M)

s 1
Roro-dep(2, M, T) = ©(T ™)

Lower bounds typically very challenging [JINZ'16, AAAK'17, DRY'18, ...].
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Main Result |: Upper Bound

Theorem 1 (Upper Bound)

There exist policies 1, 72 such that

1
E[R(n")] < polylog(K, T) - VK T2-211
KT

o M =loglog T batches sufficient for centralized minimax regret

@ M =log T batches sufficient for centralized problem-dependent regret
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BaSE (Batched Successive Elimination)
Input: K, M, T, time grid T
Output: policy ™
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BaSE Policy

BaSE (Batched Successive Elimination)

Input: K, M, T, time grid T

Output: policy ™

initialize the set of active arms A « [K];

for m=1to M do
pull all active arms for same number of times in m-th batch;
estimate the mean reward for each active arm;
eliminate all probably suboptimal arms from A.

end for
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Optimal Grid Design

Trninimax = {tl, T, t[\/]} with

t1 = a, tm = La, /tm—lJa

where a is chosen such that ty, = T.
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Main Result II: Static Lower Bound

Theorem 2 (Static Lower Bound)

Under any static grid,

S S
Rmin-max(K, M, T) = Q(\/KTQ_gl—M)
1
Rpro—dep(K, M, T) = Q(KTM)

@ match the upper bounds within logarithmic factors

@ proof uses a max-min approach: find multiple fixed reward
distributions under which no policy performs uniformly well
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Max-min: Fixed Hypothesis Testing

Fundamental idea of hypothesis testing: construct several reward
distributions such that

@ Large separation: if a policy performs well under one distribution, it
will perform badly under others

@ Indistinguishability: these reward distributions are information
theoretically hard to distinguish given observed rewards

Indistinguishability Lemma

Let Q1,- -, @, be probability measures on some common probability
space. Then for any tree T = ([n], E) and test V,

%Z Qu#£i)> > %exp(—DKL(Qi”Qj))'
i—1

(iJ)eE
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Main Result Ill: Adaptive Lower Bound

Theorem 3 (Adaptive Lower Bound)

Under any adaptive grid,

1
Rmin—max(K, M, T) = Q(M—Z o \/RTHW)
Roro-dep(K, M, T) = Q(M~2. KTw)

@ still match the upper bounds within logarithmic factors
@ max-min approach breaks down even for static but randomized grid

@ use a min-max approach instead: construct corresponding reward
distributions after a policy is given
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Min-max: More Details

Construct reward distributions Py, P>, -+, Py and events Aq,--- , Ay

Lemma 1 (Adaptive Hypotheses)

For any policy, if Pyn(Am) is not too small for some m, then the policy
incurs a large regret in the worst case.

§

Lemma 2 (Covering of Events)

For any policy it holds that

N =

M
> Pon(Am) >

m=1

\
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Concluding Remarks

Take-home message:
@ impact and optimal use of partial information in time domain
@ upper bound: BaSE policy with optimal grid design
@ lower bound: a min-max approach for adaptive grids
Future directions:
@ remove the M~2 factor in the adaptive lower bound
@ generalize to adversarial and contextual bandits

@ general tools for limited rounds of adaptivity

Thank you!
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