Policy Continuation with Hindsight Inverse Dynamics

Hao Sun¹, Zhizhong Li¹, Xiaotong Liu², Dahua Lin¹, Bolei Zhou¹

1 The Chinese University of Hong Kong

² Peking University

sh018@ie.cuhk.edu.hk

Goal-Oriented Reward Sparse Tasks

Inspirations from Human Learning

1. Learning from failures
[Hindsight Experience Replay, M Andrychowicz et al. 2017]

Inspirations from Human Learning

1. Learning from failures
[Hindsight Experience Replay, M Andrychowicz et al. 2017]

Inspirations from Human Learning

- 1. Learning from failures
- 2. Extrapolating Success

Our Proposed Method

1. Hindsight 2. Extrapolate 3. Policy Continuation

Equipe Inverse Dynamics with Hindsight

Inverse Dynamics:

 S_t S_{t+1} \bullet State a_t Goal

Hindsight Inverse Dynamics:

 $g = m(S_{goal})$

1-step HID Is Not Enough

1-step HID

Linear Case

Non-linear Case

Multi-step Optimality?

Policy Continuation: Test the optimality recursively

Multi-step Optimality?

Policy Continuation: Test the optimality recursively

East Exhibition Hall B + C #194