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From Specialist to Generalist

Train tasks

Pick and place Reaching Button press Window opening Pushing

ML10

Sweep into Drawer closing Dial turning Peg insertion side Basketball

Source: Meta-World
meta-world.github.io



Multi-task Reinforcement Learning

Contextual Policies Meta-learning for RL
T‘-(CL‘O? Z) — 7T(CL‘O, DT)
more general
Task description is given Task inferred from data

e.g. a goal collected by policy



Meta-Reintforcement-Learning
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Recurrent policy learns to infer task by collecting the right data



Visual Meta-Reinforcement-Learning

Env

Search for and associate stimulus and reward.



The Task Distribution
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where M,; ~ p(M)

Meta-training tasks give rise to
task inference and execution strategies



Can we learn useful meta-RL strategies
with tasks formed without supervision?



"Meta-Pre-training”
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"Meta-Pre-training”
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Unsupervised Pre-training
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Transfer to Test Tasks



o Tasks .
Task Acquisition =——>  Meta-learning

Unsupervised discovery of tasks Learn to learn to solve tasks



o Tasks .
Task Acquisition =——>  Meta-learning

Unsupervised discovery of tasks  qesssnnas Learn to learn to solve tasks

Should co-adapt



Criteria for Task Distribution

Diversity Structure



Criteria for Task Distribution

Diversity H(7T) —H(T|z) Structure
= I(7;2)



Formulation

[ .
max (T;2)

Policy 710 T  Post-update trajectories

Task scaffold ¢ Z  Task latent variable



Organize Meta-Train
Update task distribution Update policy
d¢ g

Estep



Experimental Setting

>

Visual Navigation Object Pushing
in VizDoom with Sawyer in MuJoCo















What kind of tasks are discovered?

u Direction encoded as color



What kind of tasks are discovered?

u Direction encoded as color















What kind of tasks are discovered?

Step 1

Step 5
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Transfer to Test Tasks — VizDoom
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Transfer to Test Tasks — VizDoom
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Success Rate

Faster Supervised Meta-RL
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