
VIREL: 
A Variational Inference Framework 

for Reinforcement Learning

Mattie Fellows  Anuj Mahajan Tim Rudner Shimon Whiteson 



Reinforcement Learning as 
Inference

AIM: To cast the reinforcement learning 
problem into one of probabilistic inference



Reinforcement Learning as 
Inference

AIM: To cast the reinforcement learning 
problem into one of probabilistic inference

MOTIVATION: Powerful algorithms from 
variational inference can be applied to 

reinforcement learning



Reinforcement Learning as 
Inference

AIM: To cast the reinforcement learning 
problem into one of probabilistic inference

MOTIVATION: Powerful algorithms from 
variational inference can be applied to 

reinforcement learning

Existing methods present several theoretical 
and practical barriers



Pseudo-Likelihood Methods



Pseudo-Likelihood Methods
Recast the RL objective as marginal likelihood 

then maximise a tractable bound:



Pseudo-Likelihood Methods
Recast the RL objective as marginal likelihood 

then maximise a tractable bound:

KL(q(τ)∥pθ(τ |𝒪))Pseudo-likelihood Objective :



Pseudo-Likelihood Methods
Recast the RL objective as marginal likelihood 

then maximise a tractable bound:

Target distribution,  
proportional to return

KL(q(τ)∥pθ(τ |𝒪))Pseudo-likelihood Objective :



Pseudo-Likelihood Methods
Recast the RL objective as marginal likelihood 

then maximise a tractable bound:

Target distribution,  
proportional to return

Distribution containing  
policy to be improved 

KL(q(τ)∥pθ(τ |𝒪))Pseudo-likelihood Objective :



Pseudo-Likelihood Methods
Recast the RL objective as marginal likelihood 

then maximise a tractable bound:

Target distribution,  
proportional to return

Distribution containing  
policy to be improved 

KL(q(τ)∥pθ(τ |𝒪))Pseudo-likelihood Objective :

Classic RL Objective: KL(pθ(τ |𝒪)∥q(τ))

Classic RL optimises the reverse (mode-seeking) form of KL divergence:



Pseudo-Likelihood Methods
Recast the RL objective as marginal likelihood 

then maximise a tractable bound:

Target distribution,  
proportional to return

Distribution containing  
policy to be improved 

KL(q(τ)∥pθ(τ |𝒪))Pseudo-likelihood Objective :

Classic RL Objective: KL(pθ(τ |𝒪)∥q(τ))

Classic RL optimises the reverse (mode-seeking) form of KL divergence:

Pseudo-likelihood promotes risk-seeking behaviour 
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Maximum Entropy RL Objective

ℒ(θ) = 𝔼qθ(τ) [
N−1

∑
i=0

(ri − c log πθ(ai |si))]
Temperature 
parameter 

Variational  
distribution  

containing policy 

Optimal deterministic policies are not learned

Counterexamples show several cases when optimal RL policy 
can’t be recovered

Optimality of solution sensitive to temperature

Canonical algorithm: Soft Actor Critic (Haarnoja et al. 18) 
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Introduce a Boltzmann Policy Any bounded, 
smooth function 

approximator

Optimal  
deterministic policy 

learnt
Introduce variational policy  πθ(a |s) ≈ πω(a |s)

Find  θ* = argθ min KL(πθ∥πω) Minimises reverse  
KL divergence



Naturally Balanced 
Exploration/Exploitation:

⇡⇤(a|·)

⇡!(a|·)

a

"! >> 0
⇡⇤(a|·)

⇡!(a|·)

a

"! ⇡ 0



Naturally Balanced 
Exploration/Exploitation:

⇡⇤(a|·)

⇡!(a|·)

a

"! >> 0
⇡⇤(a|·)

⇡!(a|·)

a

"! ⇡ 0

Model not confident about

optimal policy



Naturally Balanced 
Exploration/Exploitation:

⇡⇤(a|·)

⇡!(a|·)

a

"! >> 0
⇡⇤(a|·)

⇡!(a|·)

a

"! ⇡ 0

Model not confident about

optimal policy

Encourages exploration



Naturally Balanced 
Exploration/Exploitation:

⇡⇤(a|·)

⇡!(a|·)

a

"! >> 0
⇡⇤(a|·)

⇡!(a|·)

a

"! ⇡ 0

Model not confident about

optimal policy

Model confident about

optimal policy

Encourages exploration



Naturally Balanced 
Exploration/Exploitation:

⇡⇤(a|·)

⇡!(a|·)

a

"! >> 0
⇡⇤(a|·)

⇡!(a|·)

a

"! ⇡ 0

Model not confident about

optimal policy

Model confident about

optimal policy

Encourages exploration Encourages exploitation



Actor-Critic Algorithms



Actor-Critic Algorithms
KL divergence intractable, so maximise evidence lower 

bound instead 



Actor-Critic Algorithms
KL divergence intractable, so maximise evidence lower 

bound instead 

Using expectation maximisation (EM) with VIREL 
framework yields an actor-critic algorithm



Actor-Critic Algorithms
KL divergence intractable, so maximise evidence lower 

bound instead 

Using expectation maximisation (EM) with VIREL 
framework yields an actor-critic algorithm

E-step = Entropy regularised policy improvement (actor)



Actor-Critic Algorithms
KL divergence intractable, so maximise evidence lower 

bound instead 

Using expectation maximisation (EM) with VIREL 
framework yields an actor-critic algorithm

E-step = Entropy regularised policy improvement (actor)

M-step = Policy evaluation (critic)



Actor-Critic Algorithms
KL divergence intractable, so maximise evidence lower 

bound instead 

Using expectation maximisation (EM) with VIREL 
framework yields an actor-critic algorithm

E-step = Entropy regularised policy improvement (actor)

M-step = Policy evaluation (critic)

Framework very general: Maximum a Posteriori Policy 
Optimisation (Abdolmaleki et al. 18) easily derived from VIREL 

without simplifying approximations 
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