

VIREL:

A Variational Inference Framework for Reinforcement Learning

Mattie Fellows

Anuj Mahajan

Tim Rudner

Shimon Whiteson

Reinforcement Learning as Inference

AIM: To cast the reinforcement learning problem into one of probabilistic inference

Reinforcement Learning as Inference

AIM: To cast the reinforcement learning problem into one of probabilistic inference

MOTIVATION: Powerful algorithms from variational inference can be applied to reinforcement learning

Reinforcement Learning as Inference

AIM: To cast the reinforcement learning problem into one of probabilistic inference

MOTIVATION: Powerful algorithms from variational inference can be applied to reinforcement learning

Existing methods present several theoretical and practical barriers

Recast the RL objective as marginal likelihood then maximise a tractable bound:

Recast the RL objective as marginal likelihood then maximise a tractable bound:

Pseudo-likelihood Objective : $\mathit{KL}(q(\tau) \| p_{\theta}(\tau \, | \, \mathcal{O}))$

Recast the RL objective as marginal likelihood then maximise a tractable bound:

Pseudo-likelihood Objective : $KL(q(\tau) \| p_{\theta}(\tau \mid \mathcal{O}))$

Target distribution, proportional to return

Recast the RL objective as marginal likelihood then maximise a tractable bound:

Pseudo-likelihood Objective : $KL(q(\tau) || p_{\theta}(\tau | \mathcal{O}))$

Target distribution, proportional to return

Distribution containing policy to be improved

Recast the RL objective as marginal likelihood then maximise a tractable bound:

Pseudo-likelihood Objective : $KL(q(\tau) || p_{\theta}(\tau | \mathcal{O}))$

Target distribution, proportional to return

Distribution containing policy to be improved

Classic RL optimises the reverse (mode-seeking) form of KL divergence:

Classic RL Objective: $KL(p_{\theta}(\tau \mid \mathcal{O}) || q(\tau))$

Recast the RL objective as marginal likelihood then maximise a tractable bound:

Pseudo-likelihood Objective : $\mathit{KL}(q(\tau) \| p_{\theta}(\tau \, | \, \mathcal{O}))$

Target distribution, proportional to return

Distribution containing policy to be improved

Classic RL optimises the reverse (mode-seeking) form of KL divergence:

Classic RL Objective: $KL(p_{\theta}(\tau \mid \mathcal{O}) || q(\tau))$

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(\tau)} \left[\sum_{i=0}^{N-1} \left(r_i - c \log \pi_{\theta}(a_i | s_i) \right) \right]$$

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(\tau)} \left[\sum_{i=0}^{N-1} \left(r_i - c \log \pi_{\theta}(a_i \,|\, s_i) \right) \right]$$
 Variational distribution containing policy

Canonical algorithm: Soft Actor Critic (Haarnoja et al. 18)

Canonical algorithm: Soft Actor Critic (Haarnoja et al. 18)

Optimal deterministic policies are not learned

Canonical algorithm: Soft Actor Critic (Haarnoja et al. 18)

Optimal deterministic policies are not learned

Counterexamples show several cases when optimal RL policy can't be recovered

Canonical algorithm: Soft Actor Critic (Haarnoja et al. 18)

Optimal deterministic policies are not learned

Counterexamples show several cases when optimal RL policy can't be recovered

Optimality of solution sensitive to temperature

Naturally learns optimal deterministic policies

Naturally learns optimal deterministic policies

Temperature not a hyperparameter

Naturally learns optimal deterministic policies

Temperature not a hyperparameter

Function approximators explicitly used

Naturally learns optimal deterministic policies

Temperature not a hyperparameter

Function approximators explicitly used

Naturally learns optimal deterministic policies

Temperature not a hyperparameter

Discounting easily incorporated

Function approximators explicitly used

Naturally learns optimal deterministic policies

Optimises the reverse form of KL divergence

Temperature not a hyperparameter

Discounting easily incorporated

Function approximators explicitly used

Naturally learns optimal deterministic policies

Optimises the reverse form of KL divergence

VIREL

Variational Inference for Reinforcement Learning

Discounting easily incorporated

Temperature not a hyperparameter

Function approximators explicitly used

Introduce a Boltzmann Policy
$$\pi_{\omega}(a \mid s) = \frac{\frac{\exp\left(\hat{Q}_{\omega}(s, a)\right)}{\varepsilon_{\omega}}}{\int \frac{\exp\left(\hat{Q}_{\omega}(s, a)\right)}{\varepsilon_{\omega}}dh}$$

Temperature is mean-squared Bellman error: $\epsilon_{\omega} = \|\mathcal{T}^*\hat{Q}_{\omega}(\,\cdot\,) - \hat{Q}_{\omega}(\,\cdot\,)\|_{d(h)}^2$

Temperature is mean-squared Bellman error: $\epsilon_{\omega} = \|\mathcal{T}^*\hat{Q}_{\omega}(\,\cdot\,) - \hat{Q}_{\omega}(\,\cdot\,)\|_{d(h)}^2$

$$\varepsilon_{\omega} = 0 \implies \hat{Q}_{\omega^*}(\,\cdot\,) = Q^*(\,\cdot\,) \implies \pi_{\omega^*} = \pi^*$$

Temperature is mean-squared Bellman error: $\epsilon_{\omega} = \|\mathcal{T}*\hat{Q}_{\omega}(\,\cdot\,) - \hat{Q}_{\omega}(\,\cdot\,)\|_{d(h)}^2$

$$\varepsilon_{\omega} = 0 \implies \hat{Q}_{\omega^*}(\,\cdot\,) = Q^*(\,\cdot\,) \implies \pi_{\omega^*} = \pi^*$$
 Optimal deterministic policy learnt

Temperature is mean-squared Bellman error: $\epsilon_{\omega} = \|\mathcal{T}*\hat{Q}_{\omega}(\,\cdot\,) - \hat{Q}_{\omega}(\,\cdot\,)\|_{d(h)}^2$

$$\varepsilon_{\omega} = 0 \implies \hat{Q}_{\omega^*}(\,\cdot\,) = Q^*(\,\cdot\,) \implies \pi_{\omega^*} = \pi^*$$

AIM: Find $\omega^* = \arg_\omega \min \varepsilon_\omega$ and infer π_{ω^*}

Optimal deterministic policy learnt

Temperature is mean-squared Bellman error: $\epsilon_{\omega} = \|\mathcal{T}*\hat{Q}_{\omega}(\,\cdot\,) - \hat{Q}_{\omega}(\,\cdot\,)\|_{d(h)}^2$

$$\varepsilon_{\omega} = 0 \implies \hat{Q}_{\omega^*}(\cdot) = Q^*(\cdot) \implies \pi_{\omega^*} = \pi^*$$

AIM: Find $\omega^* = \arg_{\omega} \min \varepsilon_{\omega}$ and infer π_{ω^*}

Optimal deterministic policy learnt

Introduce variational policy $\pi_{\theta}(a \mid s) \approx \pi_{\omega}(a \mid s)$

Temperature is mean-squared Bellman error: $\epsilon_{\omega} = \|\mathcal{T}*\hat{Q}_{\omega}(\,\cdot\,) - \hat{Q}_{\omega}(\,\cdot\,)\|_{d(h)}^2$

$$\varepsilon_{\omega} = 0 \implies \hat{Q}_{\omega^*}(\,\cdot\,) = Q^*(\,\cdot\,) \implies \pi_{\omega^*} = \pi^*$$
 AIM: Find $\omega^* = \arg_{\omega} \min \varepsilon_{\omega}$ and infer π_{ω^*} Optimal deterministic policy learnt

Introduce variational policy $\pi_{\theta}(a \mid s) \approx \pi_{\omega}(a \mid s)$

Find
$$\theta^* = \arg_{\theta} \min KL(\pi_{\theta} || \pi_{\omega})$$

VIREL Framework

Introduce a Boltzmann Policy
$$\pi_{\omega}(a \mid s) = \frac{\frac{\exp\left(\hat{Q}_{\omega}(s,a)\right)}{\varepsilon_{\omega}}}{\int \frac{\exp\left(\hat{Q}_{\omega}(s,a)\right)}{\varepsilon_{\omega}}dh}$$
 Any bounded, smooth function approximator

Temperature is mean-squared Bellman error: $\epsilon_{\omega} = \|\mathcal{T}*\hat{Q}_{\omega}(\,\cdot\,) - \hat{Q}_{\omega}(\,\cdot\,)\|_{d(h)}^2$

$$\varepsilon_{\omega} = 0 \implies \hat{Q}_{\omega^*}(\,\cdot\,) = Q^*(\,\cdot\,) \implies \pi_{\omega^*} = \pi^*$$
 AIM: Find $\omega^* = \arg_{\omega} \min \varepsilon_{\omega}$ and infer π_{ω^*} Optimal deterministic policy

Introduce variational policy $\pi_{\theta}(a \mid s) \approx \pi_{\omega}(a \mid s)$

Find
$$\theta^* = \arg_{\theta} \min KL(\pi_{\theta} || \pi_{\omega})$$
 Minimises reverse KL divergence

learnt

optimal policy

Model not confident about optimal policy

Encourages exploration

Encourages exploration

Model not confident about optimal policy

Model confident about optimal policy

Encourages exploration

Encourages exploitation

KL divergence intractable, so maximise evidence lower bound instead

KL divergence intractable, so maximise evidence lower bound instead

Using expectation maximisation (EM) with VIREL framework yields an actor-critic algorithm

KL divergence intractable, so maximise evidence lower bound instead

Using expectation maximisation (EM) with VIREL framework yields an actor-critic algorithm

E-step = Entropy regularised policy improvement (actor)

KL divergence intractable, so maximise evidence lower bound instead

Using expectation maximisation (EM) with VIREL framework yields an actor-critic algorithm

E-step = Entropy regularised policy improvement (actor)

M-step = Policy evaluation (critic)

KL divergence intractable, so maximise evidence lower bound instead

Using expectation maximisation (EM) with VIREL framework yields an actor-critic algorithm

E-step = Entropy regularised policy improvement (actor)

M-step = Policy evaluation (critic)

Framework very general: Maximum a Posteriori Policy
Optimisation (Abdolmaleki et al. 18) easily derived from VIREL
without simplifying approximations

Results

Thank you for listening

Please visit our poster

East Exhibition Hall B + C Number 214