
VIREL:
A Variational Inference Framework

for Reinforcement Learning

Mattie Fellows Anuj Mahajan Tim Rudner Shimon Whiteson

Reinforcement Learning as
Inference

AIM: To cast the reinforcement learning
problem into one of probabilistic inference

Reinforcement Learning as
Inference

AIM: To cast the reinforcement learning
problem into one of probabilistic inference

MOTIVATION: Powerful algorithms from
variational inference can be applied to

reinforcement learning

Reinforcement Learning as
Inference

AIM: To cast the reinforcement learning
problem into one of probabilistic inference

MOTIVATION: Powerful algorithms from
variational inference can be applied to

reinforcement learning

Existing methods present several theoretical
and practical barriers

Pseudo-Likelihood Methods

Pseudo-Likelihood Methods
Recast the RL objective as marginal likelihood

then maximise a tractable bound:

Pseudo-Likelihood Methods
Recast the RL objective as marginal likelihood

then maximise a tractable bound:

KL(q(τ)∥pθ(τ |𝒪))Pseudo-likelihood Objective :

Pseudo-Likelihood Methods
Recast the RL objective as marginal likelihood

then maximise a tractable bound:

Target distribution,
proportional to return

KL(q(τ)∥pθ(τ |𝒪))Pseudo-likelihood Objective :

Pseudo-Likelihood Methods
Recast the RL objective as marginal likelihood

then maximise a tractable bound:

Target distribution,
proportional to return

Distribution containing
policy to be improved

KL(q(τ)∥pθ(τ |𝒪))Pseudo-likelihood Objective :

Pseudo-Likelihood Methods
Recast the RL objective as marginal likelihood

then maximise a tractable bound:

Target distribution,
proportional to return

Distribution containing
policy to be improved

KL(q(τ)∥pθ(τ |𝒪))Pseudo-likelihood Objective :

Classic RL Objective: KL(pθ(τ |𝒪)∥q(τ))

Classic RL optimises the reverse (mode-seeking) form of KL divergence:

Pseudo-Likelihood Methods
Recast the RL objective as marginal likelihood

then maximise a tractable bound:

Target distribution,
proportional to return

Distribution containing
policy to be improved

KL(q(τ)∥pθ(τ |𝒪))Pseudo-likelihood Objective :

Classic RL Objective: KL(pθ(τ |𝒪)∥q(τ))

Classic RL optimises the reverse (mode-seeking) form of KL divergence:

Pseudo-likelihood promotes risk-seeking behaviour

Maximum Entropy RL Objective

Maximum Entropy RL Objective

ℒ(θ) = 𝔼qθ(τ) [
N−1

∑
i=0

(ri − c log πθ(ai |si))]

Maximum Entropy RL Objective

ℒ(θ) = 𝔼qθ(τ) [
N−1

∑
i=0

(ri − c log πθ(ai |si))]Variational
distribution

containing policy

Maximum Entropy RL Objective

ℒ(θ) = 𝔼qθ(τ) [
N−1

∑
i=0

(ri − c log πθ(ai |si))]
Temperature
parameter

Variational
distribution

containing policy

Maximum Entropy RL Objective

ℒ(θ) = 𝔼qθ(τ) [
N−1

∑
i=0

(ri − c log πθ(ai |si))]
Temperature
parameter

Variational
distribution

containing policy

Canonical algorithm: Soft Actor Critic (Haarnoja et al. 18)

Maximum Entropy RL Objective

ℒ(θ) = 𝔼qθ(τ) [
N−1

∑
i=0

(ri − c log πθ(ai |si))]
Temperature
parameter

Variational
distribution

containing policy

Optimal deterministic policies are not learned

Canonical algorithm: Soft Actor Critic (Haarnoja et al. 18)

Maximum Entropy RL Objective

ℒ(θ) = 𝔼qθ(τ) [
N−1

∑
i=0

(ri − c log πθ(ai |si))]
Temperature
parameter

Variational
distribution

containing policy

Optimal deterministic policies are not learned

Counterexamples show several cases when optimal RL policy
can’t be recovered

Canonical algorithm: Soft Actor Critic (Haarnoja et al. 18)

Maximum Entropy RL Objective

ℒ(θ) = 𝔼qθ(τ) [
N−1

∑
i=0

(ri − c log πθ(ai |si))]
Temperature
parameter

Variational
distribution

containing policy

Optimal deterministic policies are not learned

Counterexamples show several cases when optimal RL policy
can’t be recovered

Optimality of solution sensitive to temperature

Canonical algorithm: Soft Actor Critic (Haarnoja et al. 18)

Desiderata for an Inference
Framework

Desiderata for an Inference
Framework
Naturally learns optimal

deterministic policies

Desiderata for an Inference
Framework
Naturally learns optimal

deterministic policies

Temperature not a
hyperparameter

Desiderata for an Inference
Framework
Naturally learns optimal

deterministic policies

Function approximators
explicitly used

Temperature not a
hyperparameter

Desiderata for an Inference
Framework
Naturally learns optimal

deterministic policies

Function approximators
explicitly used

Stochastic policies used
for learning

Temperature not a
hyperparameter

Desiderata for an Inference
Framework
Naturally learns optimal

deterministic policies

Discounting easily
incorporated

Function approximators
explicitly used

Stochastic policies used
for learning

Temperature not a
hyperparameter

Desiderata for an Inference
Framework

Optimises the reverse
form of KL divergence

Naturally learns optimal
deterministic policies

Discounting easily
incorporated

Function approximators
explicitly used

Stochastic policies used
for learning

Temperature not a
hyperparameter

Desiderata for an Inference
Framework

Optimises the reverse
form of KL divergence

Naturally learns optimal
deterministic policies

Discounting easily
incorporated

Function approximators
explicitly used

VIREL
Variational Inference

for Reinforcement Learning

Stochastic policies used
for learning

Temperature not a
hyperparameter

VIREL Framework

VIREL Framework

πω(a |s) =

exp(Q̂ω(s, a))
εω

∫
exp(Q̂ω(s, a))

εω
dh

Introduce a Boltzmann Policy

VIREL Framework

πω(a |s) =

exp(Q̂ω(s, a))
εω

∫
exp(Q̂ω(s, a))

εω
dh

Introduce a Boltzmann Policy Any bounded,
smooth function

approximator

VIREL Framework

εω = ∥𝒯*Q̂ω(⋅) − Q̂ω(⋅)∥2
d(h)Temperature is mean-squared Bellman error:

πω(a |s) =

exp(Q̂ω(s, a))
εω

∫
exp(Q̂ω(s, a))

εω
dh

Introduce a Boltzmann Policy Any bounded,
smooth function

approximator

VIREL Framework

εω = ∥𝒯*Q̂ω(⋅) − Q̂ω(⋅)∥2
d(h)Temperature is mean-squared Bellman error:

εω = 0 ⟹ Q̂ω*(⋅) = Q*(⋅) ⟹ πω* = π*

πω(a |s) =

exp(Q̂ω(s, a))
εω

∫
exp(Q̂ω(s, a))

εω
dh

Introduce a Boltzmann Policy Any bounded,
smooth function

approximator

VIREL Framework

εω = ∥𝒯*Q̂ω(⋅) − Q̂ω(⋅)∥2
d(h)Temperature is mean-squared Bellman error:

εω = 0 ⟹ Q̂ω*(⋅) = Q*(⋅) ⟹ πω* = π*

πω(a |s) =

exp(Q̂ω(s, a))
εω

∫
exp(Q̂ω(s, a))

εω
dh

Introduce a Boltzmann Policy Any bounded,
smooth function

approximator

Optimal
deterministic policy

learnt

VIREL Framework

εω = ∥𝒯*Q̂ω(⋅) − Q̂ω(⋅)∥2
d(h)Temperature is mean-squared Bellman error:

εω = 0 ⟹ Q̂ω*(⋅) = Q*(⋅) ⟹ πω* = π*

AIM: Find and infer ω* = argω min εω πω*

πω(a |s) =

exp(Q̂ω(s, a))
εω

∫
exp(Q̂ω(s, a))

εω
dh

Introduce a Boltzmann Policy Any bounded,
smooth function

approximator

Optimal
deterministic policy

learnt

VIREL Framework

εω = ∥𝒯*Q̂ω(⋅) − Q̂ω(⋅)∥2
d(h)Temperature is mean-squared Bellman error:

εω = 0 ⟹ Q̂ω*(⋅) = Q*(⋅) ⟹ πω* = π*

AIM: Find and infer ω* = argω min εω πω*

πω(a |s) =

exp(Q̂ω(s, a))
εω

∫
exp(Q̂ω(s, a))

εω
dh

Introduce a Boltzmann Policy Any bounded,
smooth function

approximator

Optimal
deterministic policy

learnt
Introduce variational policy πθ(a |s) ≈ πω(a |s)

VIREL Framework

εω = ∥𝒯*Q̂ω(⋅) − Q̂ω(⋅)∥2
d(h)Temperature is mean-squared Bellman error:

εω = 0 ⟹ Q̂ω*(⋅) = Q*(⋅) ⟹ πω* = π*

AIM: Find and infer ω* = argω min εω πω*

πω(a |s) =

exp(Q̂ω(s, a))
εω

∫
exp(Q̂ω(s, a))

εω
dh

Introduce a Boltzmann Policy Any bounded,
smooth function

approximator

Optimal
deterministic policy

learnt
Introduce variational policy πθ(a |s) ≈ πω(a |s)

Find θ* = argθ min KL(πθ∥πω)

VIREL Framework

εω = ∥𝒯*Q̂ω(⋅) − Q̂ω(⋅)∥2
d(h)Temperature is mean-squared Bellman error:

εω = 0 ⟹ Q̂ω*(⋅) = Q*(⋅) ⟹ πω* = π*

AIM: Find and infer ω* = argω min εω πω*

πω(a |s) =

exp(Q̂ω(s, a))
εω

∫
exp(Q̂ω(s, a))

εω
dh

Introduce a Boltzmann Policy Any bounded,
smooth function

approximator

Optimal
deterministic policy

learnt
Introduce variational policy πθ(a |s) ≈ πω(a |s)

Find θ* = argθ min KL(πθ∥πω) Minimises reverse
KL divergence

Naturally Balanced
Exploration/Exploitation:

⇡⇤(a|·)

⇡!(a|·)

a

"! >> 0
⇡⇤(a|·)

⇡!(a|·)

a

"! ⇡ 0

Naturally Balanced
Exploration/Exploitation:

⇡⇤(a|·)

⇡!(a|·)

a

"! >> 0
⇡⇤(a|·)

⇡!(a|·)

a

"! ⇡ 0

Model not confident about

optimal policy

Naturally Balanced
Exploration/Exploitation:

⇡⇤(a|·)

⇡!(a|·)

a

"! >> 0
⇡⇤(a|·)

⇡!(a|·)

a

"! ⇡ 0

Model not confident about

optimal policy

Encourages exploration

Naturally Balanced
Exploration/Exploitation:

⇡⇤(a|·)

⇡!(a|·)

a

"! >> 0
⇡⇤(a|·)

⇡!(a|·)

a

"! ⇡ 0

Model not confident about

optimal policy

Model confident about

optimal policy

Encourages exploration

Naturally Balanced
Exploration/Exploitation:

⇡⇤(a|·)

⇡!(a|·)

a

"! >> 0
⇡⇤(a|·)

⇡!(a|·)

a

"! ⇡ 0

Model not confident about

optimal policy

Model confident about

optimal policy

Encourages exploration Encourages exploitation

Actor-Critic Algorithms

Actor-Critic Algorithms
KL divergence intractable, so maximise evidence lower

bound instead

Actor-Critic Algorithms
KL divergence intractable, so maximise evidence lower

bound instead

Using expectation maximisation (EM) with VIREL
framework yields an actor-critic algorithm

Actor-Critic Algorithms
KL divergence intractable, so maximise evidence lower

bound instead

Using expectation maximisation (EM) with VIREL
framework yields an actor-critic algorithm

E-step = Entropy regularised policy improvement (actor)

Actor-Critic Algorithms
KL divergence intractable, so maximise evidence lower

bound instead

Using expectation maximisation (EM) with VIREL
framework yields an actor-critic algorithm

E-step = Entropy regularised policy improvement (actor)

M-step = Policy evaluation (critic)

Actor-Critic Algorithms
KL divergence intractable, so maximise evidence lower

bound instead

Using expectation maximisation (EM) with VIREL
framework yields an actor-critic algorithm

E-step = Entropy regularised policy improvement (actor)

M-step = Policy evaluation (critic)

Framework very general: Maximum a Posteriori Policy
Optimisation (Abdolmaleki et al. 18) easily derived from VIREL

without simplifying approximations

Results

Thank you for listening

Please visit our poster

East Exhibition Hall B + C
Number 214

