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● Question: What is the value (average reward) of the policy?
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Off-policy Policy Estimation
● Want to estimate average discounted per-step reward of policy,

● Only have access to finite experience dataset 

where transitions are from some unknown distribution

● Don’t even know the behavior policy!
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Reduction of OPE to Density Ratio Estimation
● Can write                                               where dπ is discounted on-policy distribution

● Using importance weighting trick, we have,

● Given finite dataset, this corresponds to weighted average,

● Problem reduces to estimating weights (density ratios)

● Difficult because we don’t have access to environment and we don’t have explicit 
knowledge of dD(s,a), only samples.
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● Define zero-reward Bellman operator as

● Nice: Objective is based on expectations from dD, β, and π, which we have access to.
● Extension 1: Can remove appearance of Bellman operator from both objective and 

solution by application of Fenchel conjugate!
● Extension 2: Can generalize this result to any convex function (not just square)!

The DualDICE Objective

maximize initial 
“nu-values”
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