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Proving with polynomials

For a multivariate polynomial p, consider the following task:

[ Show that p(xi,...,x,) > 0 for all x € [0,1]"

Many hard problems can be formulated as
such; e.g., SAT, TSP, stable set, max-cut, etc.

Train an agent using Reinforcement Learning to prove the non-
negativity of polynomials.




Proof system

Axioms
0<z <1 Result
_,1_ —— Lemmal —— - —— Lemmak — p(x) >0
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o Inference rules:
e h>0 = x;h >0,
o h>0 = (1—x)h>0,
e hj >0 = > . A\ihi >0,V\; > 0.
@ Proof of p > 0: corresponds to the composition of inference rules,
which yields exactly the polynomial p.
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We use DQN to train the prover. Two important ingredients:
@ We use dense, unsupervised rewards.

@ We incorporate important symmetries in the Q-network.
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Key result. Reduction of the size of the linear program by several orders
of magnitude compared to the static approach.

Come see our poster #120 for more details!



