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Barycenters

We use the Sinkhorn Divergence (Entropic Optimal Transport) as a measure of

similarity between probability distributions.



A glimpse on Sinkhorn divergence Sε

Sε is used to compare probability measures. Properties:

i) it has a geometric flavour, lifting the distance on X to P(X )

ii) it is well defined also for measures with non-overlapping support



Barycenter problem

Given β1, . . . βm ∈ P(X ) input measures, and ω1, . . . , ωm ≥ 0 a set of weights such

that
∑m

j=1 ωj = 1, we aim to solve

min
α∈P(X )

Bε(α), with Bε(α) =
m∑
j=1

ωj Sε(α, βj).

↪→ Optimization problem over the space of measures



Approach: Frank-Wolfe algorithm

Classic methods to approach barycenter problem:

let α∗ =
∑N

i=1 aiδxi

1. fixed support methods: the support {xi}Ni=1 is fixed a priori and the optimization

occurs on the weights only. [Benamou et al., 2015, Dvurechenskii et al., 2018] Well

understood convergence analysis.

OR

2. free support methods: a standard approach is to use alternating minimization on

on weights and support points [Cuturi and Doucet, 2014] (no convergence

guarantees). Different approach? Theoretical guarantees?



Free support barycenter algorithm

We use a Frank-Wolfe approach to minimize Bε.

Start from α0 := δx0 with x0 ∈ X . For each iteration k = 1, 2, . . . :

1. compute ∇Bε(αk) with SINKHORN ALGORITHM (∇Bε is a smooth function on X )

2. find xk+1 ∈ argminx∈X∇Bε(αk)(x)

3. update

αk+1 =
k

k + 2
αk +

2

k + 2
δxk+1



Convergence analysis in the general setting

The input measures may be continuous . . .



Convergence analysis in the general setting

The input measures may be continuous . . .



Convergence analysis in the general setting

−→ we only have access to samples. . .



Convergence analysis in the general setting

Question: how close is the estimated α̂ to the ideal barycenter α∗?



Convergence analysis in the general setting

General setting: continuous input measures βj −→ we have only access to samples.

We obtain β̂1, . . . , β̂m be empirical distributions with n ∈ N support points, each

independently sampled from β1, . . . , βm

Let αk be the k-th iterate of FW applied to β̂1, . . . , β̂m.

Theorem. for any τ ∈ (0, 1], the following holds with probability larger than 1− τ

Bε(αk)− min
α∈P(X )

Bε(α) ≤
Cε log

3m
τ

min(k,
√
n)
.



To wrap up: contributions

We propose a new method to compute the barycenter of a set of distributions with

respect to the Sinkhorn divergence:

• it does not fix the support beforehand (free support method)

• it handles both discrete and continuous measures

• we provide convergence analysis.

The approach builds upon the Frank-Wolfe algorithm. In order to apply FW, we prove

new smoothness results on Sinkhhorn divergence.
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