SySCD
A System-Aware Parallel
Coordinate Descent Algorithm

Nikolas loannou* Celestine Mendler-Dinner* Thomas Parnell
IBM Research UC Berkeley IBM Research

*equal contribution

Parallel Coordinate Descent

min f(A o) + Z g:(0s) Parallel Coordi.nf’ite Descent . _
; 1: Input: Training data matrix A € R**"
Initial model a =0, v=0
2: fort=1,2,... do
3 parfor j € RANDOMPERMUTATION(n) do
4 Find § minimizing f(v + A. ;6) + g;(a; + 9)
5: aj — aj 490
6 vV v +0A.
7 end parfor
8:

end for

Parallel Coordinate Descent

min f(Acy) + Z g:(0s) Parallel Coordi'nfate Descent . _
; 1: Input: Training data matrix A € R**"
Initial model a =0, v =0

 fort=1,2,...do
parfor j € RANDOMPERMUTATION(n) do

Find 0 minimizing f(v + A. ;d) + g;(a; + 6)

j < + 0

vV Vv +0A.

end parfor

Co ~ O Ot = W N

end for

Parallel Coordinate Descent

min f(A o) + Z g:(0s) Parallel Coordi.nf’ite Descent . _
; 1: Input: Training data matrix A € R**"
Initial model a =0, v=0
: fort=1,2,... do
parfor j € RANDOMPERMUTATION(n) do
Find § minimizing f(v + A. ;6) + g;(a; + 9)
j < QO + 0
v < v+0A.

end parfor

System-level bottlenecks:

1. Inefficient cache accesses
2. Write-contention onv
3. Scalability across NUMA nodes

end for

Parallel Coordinate Descent

min f(A o) + Z g:(0s) Parallel Coordi.nf’ite Descent . _
; 1: Input: Training data matrix A € R**"
Initial model a =0, v=0
: fort=1,2,... do
parfor j € RANDOMPERMUTATION(n) do
Find § minimizing f(v + A. ;6) + g;(a; + 9)
j < QO + 0
v < Vv+0A.

end parfor

System-level bottlenecks:

1. Inefficient cache accesses
2. Write-contention onv
3. Scalability across NUMA nodes

end for

Resolving write-contention on v

CPU
I

Resolving write-contention on v

CPU
I

Resolving write-contention on v — replicate v across threads

Parallel Coordinate Descent
1: Input: Training data matrix A € R**"
Initial model a =0, v =0

2: fort=1,2,... do

parfor j € RANDOMPERMUTATION(n) do
Find § minimizing f(v + A. ja;) + g;(a; + 9)
o — o+ 0
v <« v+0A.

end parfor

10: end for

Resolving write-contention on v — replicate v across threads

Parallel Coordinate Descent

1: Input: Training data matrix A € R**"
Initial model a =0, v =0

: fort =1,2,...do |~ #threads
v, < Vv Vp € [P]
parfor j € RANDOMPERMUTATION(n) do
Find § minimizing f(v,, A. j, ;) + g;(a; + 6)
aj < o +0
vy — Vv, +0A.;
end parfor
V<D Vp
end for

O 0o N O Ot k= W N

—
]

Resolving write-contention on v — replicate v across threads

Parallel Coordinate Descent

1: Input: Training data matrix A € R**"
Initial model a =0, v =0

2: fort=1,2,...do __~ #threads
3: v, < Vv Vpé€|[P]
4: parfor j € RANDOMPERMUTATION(n) do
5: Find § minimizing f(v,, A. ;, ;) + g;(a; + 6)
6: o < o + 0 \
7 Vp < Vp +0A. . N o
’ auxiliary model inspired by CoCoA [Smith’18]
8: end parfor
9: V<D Vp
10: end for

Connection to Distributed Methods

worker

Model or

deta A [IEEARERRRRRRRRAR

Connection to Distributed Methods

worker worker

Model a

deta A (A RRRARRRRARR

Connection to Distributed Methods

worker worker worker

MO el a1

deta A (AR RRRRARR

Connection to Distributed Methods

worker worker worker worker

MO el a1

deta A (AR RRRRARR

Connection to Distributed Methods

worker worker worker worker

shared vector v -

MO] r 1

deta A (AR RRRRARR

Connection to Distributed Methods

one physical machine

shared vector v -

MOde| ar 1

deta A (AR RRRRARR

Repartitioning

one physical machine

shared vector v -

MO] r 1

deta A (AR RRRRARR

Repartitioning

one physical machine

shared vector v -

MO el a1

deta A (AR RRRRARR

System-Aware Coordinate Descent (SySCD)

 Combination of distributed methods with repartitioning

v" high implementation efficiency
v’ theoretically sound parallel method

v’ scales to large degrees of parallelism

System-Aware Coordinate Descent (SySCD)

 Combination of distributed methods with repartitioning

v" high implementation efficiency
v’ theoretically sound parallel method

v’ scales to large degrees of parallelism

« Additional optimizations (not covered in this talk)

v NUMA - affinity

v' alignment with cache access pattern

System-Aware Coordinate Descent (SySCD)

 Combination of distributed methods with repartitioning

v" high implementation efficiency
v’ theoretically sound parallel method

v’ scales to large degrees of parallelism

« Additional optimizations (not covered in this talk)

v NUMA - affinity

v' alignment with cache access pattern

» > 10x faster than sate-of-the-art asynchronous CD methods

System-Aware Coordinate Descent (SySCD)

 Combination of distributed methods with repartitioning

v" high implementation efficiency X
poster

v’ theoretically sound parallel method #39

v’ scales to large degrees of parallelism

poster

#39

« Additional optimizations (not covered in this talk)

v NUMA - affinity

v' alignment with cache access pattern

» > 10x faster than sate-of-the-art asynchronous CD methods

