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Parallel Coordinate Descent

min f(A o) + Z g:(0s) Parallel Coordi.nf’ite Descent . _
; 1: Input: Training data matrix A € R**"
Initial model a =0, v=0
2: fort=1,2,... do
3 parfor j € RANDOMPERMUTATION(n) do
4 Find § minimizing f(v + A. ;6) + g;(a; + 9)
5: aj — aj 490
6 vV v +0A.
7 end parfor
8:

end for
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Resolving write-contention on v — replicate v across threads

Parallel Coordinate Descent
1: Input: Training data matrix A € R**"
Initial model a =0, v =0

2: fort=1,2,... do

parfor j € RANDOMPERMUTATION(n) do
Find § minimizing f(v + A. ja;) + g;(a; + 9)
o — o+ 0
v <« v+0A.

end parfor

10: end for




Resolving write-contention on v — replicate v across threads

Parallel Coordinate Descent

1: Input: Training data matrix A € R**"
Initial model a =0, v =0

: fort =1,2,...do |~ #threads
v, < Vv Vp € [P]
parfor j € RANDOMPERMUTATION(n) do
Find § minimizing f(v,, A. j, ;) + g;(a; + 6)
aj < o +0
vy — Vv, +0A.;
end parfor
V<D Vp
end for
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Resolving write-contention on v — replicate v across threads

Parallel Coordinate Descent

1: Input: Training data matrix A € R**"
Initial model a =0, v =0

2: fort=1,2,...do __~ #threads
3: v, < Vv Vpé€|[P]
4: parfor j € RANDOMPERMUTATION(n) do
5: Find § minimizing f(v,, A. ;, ;) + g;(a; + 6)
6: o < o + 0 \
7 Vp < Vp +0A. . N o
’ auxiliary model inspired by CoCoA [Smith’18]
8: end parfor
9: V<D Vp
10: end for
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Repartitioning
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 Combination of distributed methods with repartitioning

v" high implementation efficiency
v’ theoretically sound parallel method

v’ scales to large degrees of parallelism
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