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Non-smooth Convex Optimization

min
$∈ℝ'

𝑓(𝑥)
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• 𝑂𝑃𝑇 = 𝑓(𝑥∗) where 𝑥∗ ≤ 1

First Order Oracle

Query: 𝑥 ∈ ℝ6

𝑓(𝑥), ∇𝑓(𝑥)
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Parallelizable?
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Query: 𝑥<, … , 𝑥: ∈ ℝ6

𝑓(𝑥<), ∇𝑓 𝑥< , … , 𝑓(𝑥:), ∇𝑓 𝑥:

Parallel Complexity • Depth: # queries to parallel oracle
• Work: # gradients computed / functions evaluated

Our Work

• Focus on “highly parallel setting”
• 𝑘 = poly(𝑑), work = poly(𝑑)
• Question: best possible depth?
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Depth UO(𝑑</P/𝜖A/P)

High-order accelerated 
stochastic method

Lower Bound[N94,BS18]
No randomized algorithm improves 

when 𝜖 = R𝜔(𝑑O</S), depth = T𝑂(𝑑</P)

Improve to 𝜖 = R𝜔(𝑑O</M), 
depth = T𝑂( 𝑑)

Our Result
Improves when
𝜖 ∈ [𝑑O<, 𝑑O</M]
depth ∈ [ 𝑑, 𝑑]



Key Takeaways

Lower Bound
• Gradient descent is highly-parallel optimal up to depth T𝑂( 𝑑)
• Previous bound was T𝑂(𝑑</P) and ours is nearly optimal

Upper Bound
• Can improve on cutting plane  whenever 𝜖 = 𝑜(𝑑O<)
• Previous bound: 𝜖 = 𝑜(𝑑OP/M)

• Goal: 𝜖-optimal point for convex 𝑓
• Oracle: highly parallel first order
• Assumptions: 1-Lipschitz, 𝑥∗ A ≤ 1
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build Taylor approximation in depth 1
• Improve by broader acceleration 
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How?

Lower Bound
• Start with [N94,BS18] instance
• Control queries of “large” norm 

vectors from leaking information
• Build a “wall” to shield information 

in lower bound from such queries 

Upper Bound
• Minimize convolution of 𝑓 with 

Gaussian as in [DBW12]
• Apply high-order acceleration 

[GDGVSUJWZBJLLS19] using that can 
build Taylor approximation in depth 1
• Improve by broader acceleration 

framework and better local model 
than Taylor approximation

Takeaway
• General higher-order acceleration
• Stochastic approximation

Takeaway
• Shielding / wall building



Thank you

Questions?
• poster: 5:30PM - 7:30PM @ East Exhibition Hall B + C #107
• arXiv: 1906.10655
• email: sidford@stanford.edu
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