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Non-smooth Convex Optimization

Query: x € R?

}

min f(x)

}

f(x), Vi (x)

* fis convex
+ Fis 1-Lipschitz, [F(y) — FOI < [ly — x|
 OPT = f(x,) where ||x,|]| <1



Non-smooth Convex Optimization

Query: x € R?

}

First Order Oracle

f(x), Vi (x)

min f(x)

x€ERA

* fis convex

* fis1-Lipschitz, |[f(y) — f()] < [ly — x|
 OPT = f(x,) where ||x,|]| <1

« Compute “e-optimal point”: f(x) < OPT + ¢
e Use as few queries as possible



Algorithms

(Sub)-Gradient Descent
* X1 = X — NV (x)
 Output average X;, = %Z Xy,
* 0(1/€?) queries suffice

* Goal: e-optimal point for convex f
* Oracle: first order
« Assumptions: 1-Lipschitz, [|x.]|, <1
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Cutting Plane Methods

 Center of gravity / high
dimensional binary search

* O(dlog(1/€)) queries suffice




Algorithms

(Sub)-Gradient Descent
* X1 = X — NV (x)
 Output average X;, = %Z Xy,
* 0(1/€?) queries suffice

* Goal: e-optimal point for convex f
* Oracle: first order

« Assumptions: 1-Lipschitz, [|x.]|, <1

Cutting Plane Methods

 Center of gravity / high
dimensional binary search

* O(dlog(1/€)) queries suffice




Algorithms

(Sub)-Gradient Descent
* X1 = X — NV (x)
 Output average X;, = %Z Xy,
* 0(1/€?) queries suffice

Lower Bound
Unimprovable when

e = w(1/Vd)

* Goal: e-optimal point for convex f
* Oracle: first order

« Assumptions: 1-Lipschitz, [|x.]|, <1

Cutting Plane Methods

 Center of gravity / high
dimensional binary search

* O(dlog(1/€)) queries suffice

Lower Bound
Unimprovable when

€ = 0(1/\/3)




. * Goal: e-optimal point for convex f
Algorlth ms Parallelizable? * Oracle: first order
« Assumptions: 1-Lipschitz, [|x.]|, <1

(Sub)-Gradient Descent Cutting Plane Methods

* Xp41 = X — NV (xy) * Center of gravity / high
dimensional binary search

* O(dlog(1/€)) queries suffice

 Output average X;, = %Z Xy,
* 0(1/€?) queries suffice

Lower Bound Lower Bound
Unimprovable when Unimprovable when

e = w(1/Vd) e =0(1/Vd)
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Parallel Non-smooth Convex Optimization

Query: x € R4

}
min £(x)

|

f(x), Vf(x)

e fisconvex and 1-Lipschitz

m  OPT = f(e) for x| <1

* Compute e-optimal point
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Parallel Non-smooth Convex Optimization

Query: x € R4 Query: x4, ..., X, € R?

} }
g )
|

}

f(x), Vf (x) Fer), VE(xy), o, £ (), VF i)

e fisconvex and 1-Lipschitz
* OPT = f(x,) for|lx.]| <1

* Compute e-optimal point



[Nemirovski 1994]

Parallel Non-smooth Convex Optimization

Query: x € R4 Query: x4, ..., X, € R?

} }
miy £
' !

f(x), Vf(x)

f(xl)r Vf(xl)r L) f(xk)' vf(xk)

e fis convex and 1-Lipschitz
« OPT = f(x,) for|[x,|| <1
. * Depth: # queries to parallel oracle
Parallel CompIeX|ty * Work: # gradients computed / functions evaluated




[Nemirovski 1994]

Parallel Non-smooth Convex Optimization

Query: x € R4 Query: x4, ..., X, € R?

!
' Parallel First
i /()

l
f(x), Vf(x) £ 1), VFCer), e, £ (i), VF i)

First Order Oracle

|

e fisconvex and 1-Lipschitz

. — <
OPT = f(x,) for [|x,]| < 1 Our Work

Focus on “highly parallel setting”
k = poly(d), work = poly(d)
Question: best possible depth?

* Compute e-optimal point

Depth: # queries to parallel oracle
* Work: # gradients computed / functions evaluated

Parallel Complexity




State-of-the-Art

(Sub)-Gradient Descent
Depth 0(1/€%)

* Goal: e-optimal point for convex f
* Oracle: highly parallel first order
* Assumptions: 1-Lipschitz, [|x.]|, < 1

Cutting Plane Methods

Depth O(d log(1/¢€))
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T

Improves when
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depth € [Vd, d]
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(Sub)-Gradient Descent
Depth 0(1/€%)

T

Lower Bound[N94,BS18]

No randomized algorithm improves
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T
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State-of-the-Art

(Sub)-Gradient Descent
Depth 0(1/€?)

T

Lower Bound[N94,BS18]

No randomized algorithm improves

when € = 5(d‘1/6), depth = O(dl/g)

T

Improve to € = @(d~1/%),
depth = 0(+/d)

Accelerated stochastic method

[DBW12]
Depth O(d1/*/¢)

T

Improves when
€€ [d_3/4, d—1/4]
depth € [Vd, d]

Improves when

* Goal: e-optimal point for convex f
* Oracle: highly parallel first order
* Assumptions: 1-Lipschitz, [|x.]|, < 1

Cutting Plane Methods

Depth O(d log(1/¢))

High-order accelerated
stochastic method

€ € [dt,d1/4]
depth € [Vd, d]

> m

Depth O(d/3/e2/3)



* Goal: e-optimal point for convex f

Key Ta keaways e Oracle: highly parallel first order

* Assumptions: 1-Lipschitz, [|x.]|, <1

Lower Bound
* Gradient descent is highly-parallel optimal up to depth 5(\/3)

* Previous bound was O(d'/3) and ours is nearly optimal

Upper Bound
e Can improve on cutting plane whenever € = o(d_l)

* Previous bound: € = o(d™3/%)



How?

Lower Bound
e Start with [N94,BS18] instance

* Control queries of “large” norm
vectors from leaking information

* Build a “wall” to shield information
in lower bound from such queries
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Upper Bound

* Minimize convolution of f with
Gaussian as in [DBW12]

* Apply high-order acceleration
[GDGVSUJWZBIJLLS19] using that can
build Taylor approximation in depth 1

* Improve by broader acceleration
framework and better local model
than Taylor approximation



How?

Lower Bound
e Start with [N94,BS18] instance

* Control queries of “large” norm
vectors from leaking information

* Build a “wall” to shield information
in lower bound from such queries

Takeaway

* Shielding / wall building

Upper Bound

* Minimize convolution of f with
Gaussian as in [DBW12]

* Apply high-order acceleration
[GDGVSUJWZBIJLLS19] using that can
build Taylor approximation in depth 1

* Improve by broader acceleration
framework and better local model
than Taylor approximation

Takeaway

* General higher-order acceleration

* Stochastic approximation
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