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Classical Signal Recovery
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Figure: Recovering a signal with convex optimization and a sparsity prior

llons@epfl ADMM for learning with Generative Priors | Fabian Latorre, https://lions.epfl.ch Slide 2/ 8 EPFL


https://lions.epfl.ch

Leveraging GANs for Signal Recovery
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Figure: Recovering a signal with nonconvex optimization and a generative prior.
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Optimization Template

lions@epfl

min L(w) + R(w) + H(z)

w,z

subject to w = G(2)
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Optimization Template

min L(w) + R(w) + H(z)

w,z

e [ is convex and smooth
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subject to w = G(2)
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Optimization Template

min L(w) + R(w) + H(z) subject to w = G(2)

w,z

e [ is convex and smooth
e 7. H convex, possibly non-smooth but proximal friendly.
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Optimization Template

min L(w) + R(w) + H(z) subject to w = G(2)

w,z

e [ is convex and smooth
e 7. H convex, possibly non-smooth but proximal friendly.
e (5 differentiable generative model
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Decoupling via alternating minimization / penalty methods
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Decoupling via alternating minimization / penalty methods

Definition (Augmented Lagrangian)
Let p >0

Lo(w,2,1) = L(w) + (w = G(2), N) + Fllw - G
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Decoupling via alternating minimization / penalty methods

Definition (Augmented Lagrangian)
Let p >0

Lo(w,2,1) = L(w) + (w = G(2), N) + Fllw - G

Our problem (1) is equivalent to

min max Ly(w,z,\)+ R(w) + H(z)

w,z
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Iterates of Linearized ADMM
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Zi41 PﬂH(zt - szﬁp(’wt, Zt, At))
W1 4 Pap(we — oV, Ly(we, 2141, A\r))
A1 = M+ 01 - (Wi — G(2e41))

P, is the proximal mapping of A.
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Example: nonsmooth projections

{~ projection
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min ||w — w9|ec  subject to w = G(z) (4)

w,z

H(z) =0, R(w) = |[w — w|co. Proximal mapping is efficient.
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Figure: measurement error per iteration (left). Accuracy on denoised samples (right). MNIST.
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Thank you!

5:30 - 07:30 PM @ East Exhibition Hall B 4 C
Poster #76
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