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Asymmetric Valleys:
Beyond Sharp and Flat Local Minima
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Flat and Sharp minima
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Popular belief:

o . ‘I ‘ l\\ —— Empirical loss
* Flat minima generalize better!™ | ! "o Populationloss.
| Empirical minimizer
| U A Population minimizer
L
\ I
\ I
\ I
\ I
\ I

Flat
Minima

Minima

* On large-batch training for deep learning: Generalization gap and sharp minima. ICLR, 2018.




Flat and Sharp minima

Popular belief:
* Flat minima generalize better!

—— Empirical loss
= = Population loss

@® Empirical minimizer
Population minimizer

Counter-examples:
« Flat and sharp minimum can
convert to each other.*

Flat
Minima Minima

* Sharp minima can generalize for deep nets. ICML, 2017.
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Flat and Sharp minima

Popular belief:
* Flat minima generalize better!

—— Empirical loss
= = Population loss

@® Empirical minimizer
Population minimizer

Counter-examples:

« Flat and sharp minimum can
convert to each other.*

« Minima of modern deep
networks are connected**

Flat
Minima Minima

* Sharp minima can generalize for deep nets. ICML, 2017.
** Essentially no barriers in neural network energy landscape. ICML, 2018.




Flat and Sharp minima

Categorizing minima by flatness/sharpness might be
an oversimplification!
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Categorizing minima by flatness/sharpness might be
an oversimplification!

In a minimum, the landscape might be sharp along
some directions, but flat along other directions.
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Our Proposal: Asymmetric Valley

Asymmetric Valley: —— Empirical loss
Loss grows fast on one side and slowly 1.75- s
on the other side. Lso. —— Training loss
' SGD solution
o 1.25-
Definition: L oo.
* Adirection u is (r,r,p, c)-asymmetric 8075
with respect to w if V,L(w + ) < p, oo, (£.7)
ViLw —lu) > cp and | € (7,7) .
0.00- o —— —
2 -1 0 1 2 3




Our Proposal: Asymmetric Valley

Wide existence of asymmetric direction

CIFAR-10
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DenseNet-100
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VGG-16




Asymmetric Valley and Generalization

Case |I: Empirical minimizer
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—— Empirical loss
@ Empirical minimizer




Asymmetric Valley and Generalization

Case |I: Empirical minimizer

SSSSENATY,
L ]
- it ’-.
~ . NG b
'l
B > U
: % -4
7 <
7
: [

o1t Tsinghua University

—— Empirical loss
@ Empirical minimizer
— = Testloss 1




Asymmetric Valley and Generalization

Case |I: Empirical minimizer
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—— Empirical loss
@ Empirical minimizer
— = Testloss 1




Our Proposal: Asymmetric Valley

Case |I: Empirical minimizer

Corresponding test loss
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—— Empirical loss
@ Empirical minimizer
— = Testloss 1




Asymmetric Valley and Generalization

Case |I: Empirical minimizer
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—— Empirical loss
— = Testloss 2
@ Empirical minimizer




Asymmetric Valley and Generalization

Case |I: Empirical minimizer

SSSSENATY,
L ]
- it ’-.
~ . NG b
'l
B > U
: % -4
7 <
7
: [

o1t Tsinghua University

—— Empirical loss
— = Testloss 2
@ Empirical minimizer




Asymmetric Valley and Generalization

Case |I: Empirical minimizer
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—— Empirical loss
— = Testloss 2
@ Empirical minimizer




Asymmetric Valley and Generalization

Case |I: Empirical minimizer
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—— Empirical loss
— = Testloss 1
= = Testloss 2
@ Empirical minimizer




Asymmetric Valley and Generalization

Case |I: Empirical minimizer

Expected test loss of
empirical minimizer
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—— Empirical loss
— = Testloss 1
= = Testloss 2
@ Empirical minimizer




Asymmetric Valley and Generalization

Case Il: Biased solution towards the flat side

—— Empirical loss
Biased solution
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—— Empirical loss
= = Testloss 1
Biased solution




\\\\\“.
N D
A4
] A= §

== Tsinghua University

—— Empirical loss
= = Testloss 1
Biased solution
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\
“ —— Empirical loss
\ — = Testloss 1
\ * Biased solution
\
\
“ - Corresponding test loss
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—— Empirical loss
— = Testloss 2
Biased solution
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—— Empirical loss
— = Testloss 2
Biased solution

Corresponding test loss
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—— Empirical loss
— = Testloss 1

= = Testloss 2

v Biased solution
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\
\ ..
\ —— Empirical loss
\ — = Testloss 1
\ = = Testloss 2
\ Yk Biased solution
\
\
\
\
\ -
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\
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%~ Expected test loss of

biased solution towards
the flat side




Asymmetric Valley and Generalization

Case lll: Biased solution towards the sharp side

—— Empirical loss
Biased solution
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—— Empirical loss
= = Testloss 1
Biased solution
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—— Empirical loss
= = Testloss 1
Biased solution
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—— Empirical loss
= = Testloss 1
Biased solution
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—— Empirical loss
— = Testloss 2
Biased solution
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—— Empirical loss
— = Testloss 2
Biased solution
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—— Empirical loss
— — Testloss 1

= = Testloss 2

¥ Biased solution
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—— Empirical loss
— = Testloss 1

= = Testloss 2

v Biased solution

Expected test loss of
biased solution towards
the sharp side
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Our Proposal: Asymmetric Valley

Case I Case II: Case lll:
Empirical Minimizer Biased towards the flat side Biased towards the sharp side

Flat side biased solution (Case Il) generalize better!




Main Theorem 1
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Biased solution on the flat side of an

asymmetric valley leads to better ‘ ‘ — Empirical loss
. . ! ! = = Population loss 1
generahzaUOn ' ' = = Population loss 2
‘\ “ o Empirical minimizer
E(SL(W*) — E(SL(W* + CO) > (0 \ \ % Biased solution

where ¢, is a bias towards the flat side,
* 1S an empirical solution

Theorem 1 (Bias leads to better generalization). For any l e RF, U”Assumpnon 1 holds for R = ||l||2,
Assumption 2 holds for R' = ||8||2 + ||1||2, and

(ci 1)p < l; < max{r — §;,8; —r}, then we have

[EaL(’lf)*)—[E(sL (’tf)*-l-Zliui) Z —1 @p1/2—2k£> 0
i=1




Main Theorem 1 LEZS
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. . . . . \ \ —— Empirical loss
Two interesting implications: \‘ \‘ — - Population loss 1
\ \ = = Population loss 2

® Empirical minimizer

« Converging to which local minimum may \ \ % Biased solution
not be critical. However, it matters where
the solution locates in a basin.

* The solution with lowest generalization
error is not necessarily the minimizer of the
training loss.




Asymmetric Valley and Biased Solution

How to obtain a biased solution towards the flat side
of an asymmetric valley, empirically?
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Main Theorem 2 (informal)

Taking the average of the weights along
the path of SGD leads to a biased solution
towards the flat side

Elw] > ¢y >0
where ¢, Is a bias towards the flat side,
w IS SGD average

Theorem 2 (SGD averaging generates a bias). Assume that a local minimizer w* = 0isa (r,0,a,c)-
asymmetric valley, where b_ < VL(w) < a_ < 0 forw < 0, and 0 < by < VL(w) < a4 for

w > 0. Assume —a_ = cay for a large constant ¢, and _(bb;g”) =d < %. The SGD updating
rule is wy = w; — n(VL(w) + w;) where w; is the noise and |w;| < v, and assume v < a_.. Then
we have

E[@] > ¢y > 0,

where cq is a constant that only depends onn,ar,a_,b.,b_ and v.

» e o
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Empirical loss

SGD lter

Empirical minimizer w
SGD average w

* Averaging weights leads to wider optima and better generalization. UAI, 2018.




Empirical Observation
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—— Train loss
Averaging SGD weight (SWA¥) 1T e
iIndeed finds a biased solution with || ® scDsolution
higher training loss but lower test loss.
This phenomenon can NOT be well
explained by the “flatness/sharpness” a
theory! - i

A direction pointing from SWA solution to SGD solution

* Averaging weights leads to wider optima and better generalization. UAI Press, 2018.
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Future work

Leveraging asymmetric valleys (AVs):
« Designing new algorithms (e.g., SWA) based on our theory and intuition.
« Using the concept of AVs to explain which can not be explained by

sharpness/flatness theory.

Understanding asymmetric valleys (AVS):
 Where AVs originate from?

« What network structure or loss function tend to cause AVS
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