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Impossibility	Results	for	Robust	Learning

Concentration	of	measure	gives	lower	bound	on	
adversarial	risk	for	‘nice’	spaces:

NeurIPS 2018

ICLR	2019

NeurIPS 2019

AAAI	2019

AAAI	2019

Specific	distributions:		
[Gilmer+	2018],	[Fawzi+,	2018],	[Diochnos+,	2018],				

[Shafahi+,	2019],	[Bhagoji+,	2019],	[Dohmatob+,	2019]

Concentrated	metric	probability	space:	
[Mahloujifar+,	2019]



What	about	image	distributions?

Concentration	of	measure	gives	lower	bound	on	
adversarial	risk	for	‘nice’	spaces:

NeurIPS 2018

ICLR	2019

NeurIPS 2019

AAAI	2019

AAAI	2019Do	these	results	hold	for	real	distributions	like	images?
1.	Provide	a	way	to	measure	concentration	using	i.i.d.	samples

2.	Show	these	impossibility	results	do	not	simply	apply	to	image	benchmarks

Specific	distributions:		
[Gilmer+	2018],	[Fawzi+,	2018],	[Diochnos+,	2018],				

[Shafahi+,	2019],	[Bhagoji+,	2019],	[Dohmatob+,	2019]

Concentrated	metric	probability	space:	
[Mahloujifar+,	2019]
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:	ground-truth	classifierf⇤

:	underlying	data	distribution

Connecting	Concentration	and	Robust	Learning
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:	any	classifier
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E✏ :				-expansion	of	E✏

:	underlying	data	distribution

:	ground-truth	classifierf⇤
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Adversarial	Risk	and	Expanded	Error	Region
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✏

:	any	given	classifier

:	error	region	between						and	

E✏ :				-expansion	of	E✏

:	underlying	data	distributionµ

:	ground-truth	classifierf⇤
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Concentration	of	Measure
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For	any	classifier	with	risk	at	least					,	
what	is	the	minimum	possible	adversarial	risk?	
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Empirical	Concentration	Problem

only	have	access
to	data	samples

Actual	concentration	problem:
min
E✓X

µ(E✏) s.t. µ(E) � ↵

Empirical	concentration	problem:					
min
E2G

bµ(E✏) s.t. bµ(E) � ↵ :	some	special	collection	of	subsets	
(w.r.t.	perturbation	metric)

G
:	empirical	measure	based	on	samplesbµ



Main	Theoretical	Result

only	have	access
to	data	samples

asymptotic
convergence

Actual	concentration	problem:
min
E✓X

µ(E✏) s.t. µ(E) � ↵

Empirical	concentration	problem:					
min
E2G

bµ(E✏) s.t. bµ(E) � ↵

Key	idea:	increase	both	the	sample	size	
and	the	complexity	of						in	a	careful	wayG

:	some	special	collection	of	subsets	
(w.r.t.	perturbation	metric)

G
:	empirical	measure	based	on	samplesbµ



Empirically	Measuring	Concentration

To	solve: min
E2G

bµ(E✏) s.t. bµ(E) � ↵

G :	complement	of	union	of	rectangles

`1(							metric)

Algorithmic	idea:	avoid	the	dense	regions



Empirically	Measuring	Concentration

↵ = 0.01 ✏ = 1.0Illustration	of	our	algorithm	(																	,															)																	

To	solve: `1(							metric)min
E2G

bµ(E✏) s.t. bµ(E) � ↵

G :	complement	of	union	of	rectangles

• Select	dense	data	points	using	k-nearest	neighbor	

• Place	rectangles	to	capture	the	dense	area	using	k-means

Algorithmic	idea:	avoid	the	dense	regions



✏

E

Empirically	Measuring	Concentration

• Expand	the	rectangles	and	treat	the	complement	of	
their	union	as	the	error	region

• Tune	parameters	(e.g.	the	number	of	rectangles)	for	
the	best	results

↵ = 0.01 ✏ = 1.0Illustration	of	our	algorithm	(																	,															)																	

µ(E) = 0.01 ! µ(E✏) = 0.24

Algorithmic	idea:	avoid	the	dense	regions

To	solve: `1(							metric)min
E2G

bµ(E✏) s.t. bµ(E) � ↵

• Select	dense	data	points	using	k-nearest	neighbor	

• Place	rectangles	to	capture	the	dense	area	using	k-means

G :	complement	of	union	of	rectangles



Empirical	Results	on	Benchmark	Datasets

Datasets Risk	Constraint	(					) Max	Perturbation Lower	Bound	on	
Adversarial	Risk

MNIST 0.01 7.2%

MNIST 0.01 2.1%

CIFAR-10 0.05 18.1%

↵

`1  0.3

`2  1.5

`1  8/255

For	benchmark	image	datasets,	there	exists	rather	robust	error	regions



Compare	with	State-of-the-art	Defenses

Datasets Risk	Constraint	(					) Max	Perturbation Lower	Bound	on	
Adversarial	Risk

Attack	Success Rate	for	
State-of-the-art Defenses

MNIST 0.01 7.2% 10.7%		[Madry+,	2018]

MNIST 0.01 2.1% 20.0%		[Schott+, 2019]

CIFAR-10 0.05 18.1% 52.9%		[Madry+,	2019]

↵

`1  0.3

`2  1.5

`1  8/255

a	small	gap

a	large	gap

For	benchmark	image	datasets,	there	exists	rather	robust	error	regions

Suggest	concentration	is	not	the	sole	reason	behind	adversarial	vulnerability



Conclusion:	concentration	of	measure	cannot	explain	all:	either	exist	
more	robust	classifiers	or	some	other	reasons	explaining	why
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