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Abstract of h with respect to the ground truth c. Due to the explo-
) ) ] sive use of learning algorithms in real-world systems (e.g.,
Many modern machine learning classifiers are shown to be using neural networks for image classification) a more mod-

vulnerable to adversarial perturbations of the instances. De-
spite a massive amount of work focusing on making classi-
fiers robust, the task seems quite challenging. In this work,

ern approach to the classification problem aims at making
the learning process, from training till testing, more robust.
Namelv. even if the instance 2 is perturbed in a limited wav



What about image distributions?
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Lower Bounds on Adversarial Robustness from
Optimal Transport

Do these results hold for real distributions like images?
1. Provide a way to measure concentration using i.i.d. samples

2. Show these impossibility results do not simply apply to image benchmarks

Abstract of h with respect to the ground truth c. Due to the explo-
sive use of learning algorithms in real-world systems (e.g.,

€ ! C using neural networks for image classification) a more mod-
vulnerable to adversarial perturbations of the instances. De- ern approach to the classification problem aims at making
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Connecting Concentration and Robust Learning
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Risk and Error Region
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Adversarial Risk and Expanded Error Region
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Concentration of Measure

For any classifier with risk at least ¢,
what is the minimum possible adversarial risk?
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Empirical Concentration Problem

Actual concentration problem:

i . >
min i EJR SN E) = a

only have access
to data samples

P

Empirical concentration problem: [t : empirical measure based on samples

rgnelg p(Ee) s.b. p(€) = (G : some special collection of subsets
(w.r.t. perturbation metric)



Main Theoretical Result

Actual concentration problem:
min (&) s.t. u(€) >

ECX

Key idea: increase both the sample size
only have access asymptotic and the complexity of G in a careful way
to data samples convergence

P

Empirical concentration problem: [t : empirical measure based on samples

rgnelg p(Ee) s.b. p(€) = (G : some special collection of subsets
(w.r.t. perturbation metric)



Empirically Measuring Concentration

To solve: rgnngl (&) s.t. u(€) > a (foo metric)
C

G : complement of union of rectangles

Algorithmic idea: avoid the dense regions



Empirically Measuring Concentration

To solve: rgmg (&) s.t. u(€) > a (foo metric)
C

G : complement of union of rectangles

Algorithmic idea: avoid the dense regions

e Select dense data points using k-nearest neighbor

* Place rectangles to capture the dense area using k-means

Illustration of our algorithm (o« = 0.01,e = 1.0)



Empirically Measuring Concentration

To solve: ?13 (&) s.t. u(€) > a (foo metric)
C

G : complement of union of rectangles

Algorithmic idea: avoid the dense regions

* Select dense data points using k-nearest neighbor

* Place rectangles to capture the dense area using k-means

 Expand the rectangles and treat the complement of
their union as the error region

* Tune parameters (e.g. the number of rectangles) for
the best results

Illustration of our algorithm (o« = 0.01,e = 1.0)

1(€) = 0.01 — p(E.) = 0.24



Empirical Results on Benchmark Datasets

Datasets Risk Constraint ( (Y) Max Perturbation I:;:”::SE‘:;;T:;:
MNIST 0.01 (oo <0.3 7.2%
MNIST 0.01 ly < 1.5 2.1%
CIFAR-10 0.05 loo < 8/255 18.1%

For benchmark image datasets, there exists rather robust error regions



Compare with State-of-the-art Defenses

Lower Bound on

Attack Success Rate for

. (O .

Datasets Risk Constraint ( (Y) Max Perturbation Adversarial Risk State-of-the-art Defenses
a small gap

MNIST 0.01 (oo <0.3 7.2% 10.7% [Madry+, 2018]

MNIST 0.01 b < 1.5 2.1% 20.0% [Schott+, 2019]
a large gap

CIFAR-10 0.05 (oo < 8/255 18.1% 52.9% [Madry+, 2019]

For benchmark image datasets, there exists rather robust error regions

Suggest concentration is not the sole reason behind adversarial vulnerability



Conclusion: concentration of measure cannot explain all: either exist
more robust classifiers or some other reasons explaining why
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