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Why do these perturbations even exist?

[Biggio et al. 2013; 
Szegedy et al. 2013]
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How well will this model do?



cat

dog

Simple experiment

Adv. ex. 
towards the 
other class Train

Evaluate on 
original test set

dog

cat

dog

cat

New training set 
(“mislabelled”)

cat

dog

dog

Training set 
(cats vs. dogs)

dog

cat
cat

Classifier

Result: Good accuracy on the original test set 

(e.g., 78% on CIFAR-10 cats vs. dogs)



What is our model missing?

Useless featuresUseful features (used to classify)

?
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Robust features Non-robust features

… …

Useless featuresUseful features (used to classify)

In our experiment: Model accuracy comes  
entirely from non-robust features

The Robust Features Model
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Thus: Relying on non-robust features directly leads  
to adversarial vulnerability

We train classifiers to maximize accuracy: No wonder 
they utilize non-robust features

Non-robust features can be quite predictive

Back to adversarial examples
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Humans vs ML models

dog

ML models can rely on unintuitive features

→ Aligns with evidence from other work
[Jetley et al. 2018; Geirhos et al. 2019; Jacobsen et al. 2019; Yin et al. 2019]

→ What does this imply for model interpretability?
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Tomorrow: 
“Image Synthesis via 
Robust Classifiers” 
Evening poster #81
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