List-Decodable Linear Regression

Sushrut Karmalkar* Adam Klivans* Pravesh Kothari[†]

*UT Austin

Given: *n* samples as follows:

 αn inlier points (x_i, y_i) s.t. $y_i = \langle x_i, \ell^* \rangle$; $\|\ell^*\|_2^2 = 1$ and $x_i \sim \mathcal{N}(0, I_{d \times d})$.

 $(1 - \alpha)n$ outlier points chosen arbitrarily and potentially adversarially.

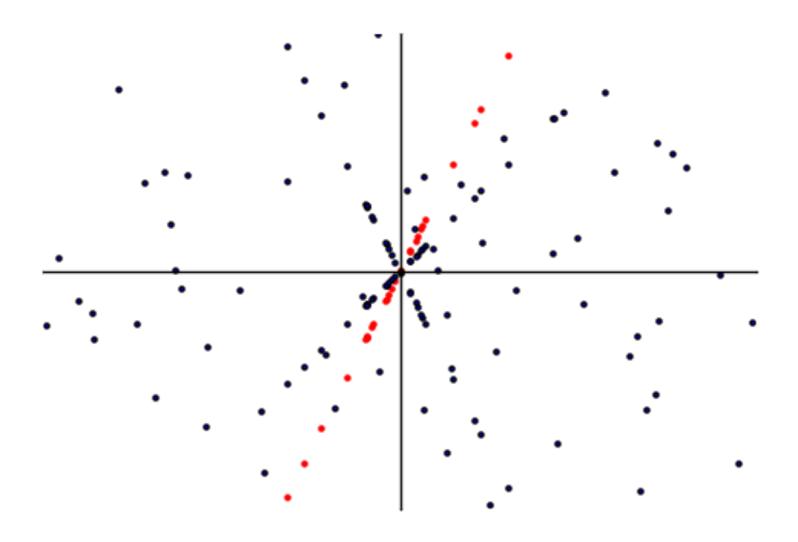
Goal: Return a $O(1/\alpha)$ sized list L containing $\ell : \|\ell - \ell^*\| \le 0.001$.

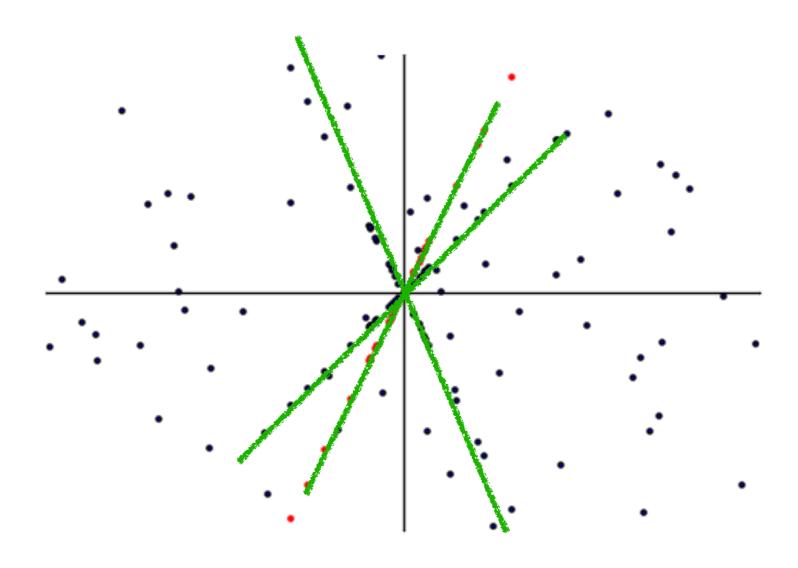
Given: *n* samples as follows:

$$\alpha n$$
 inlier points (x_i, y_i) s.t. $y_i = \langle x_i, \ell^* \rangle$; $\|\ell^*\|_2^2 = 1$ and $x_i \sim \mathcal{N}(0, I_{d \times d})$.

 $(1-\alpha)n$ outlier points chosen arbitrarily and potentially adversarially.

Goal: Return a $O(1/\alpha)$ sized list L containing $\ell : \|\ell - \ell^*\| \le 0.001$.





Robust statistics

Classical Results: Statistical estimators that can recover signals after a fraction of the data is corrupted. [...'70s], ...

Robust statistics

Classical Results: Statistical estimators that can recover signals after a fraction of the data is corrupted. [...^{'70s}], ...

2016 [<0.25 adversarial corruptions]: Computationally efficient estimators. [Lai-Rao-Vempala'16], [Diakonikolas-Kane-Kamath-Li-Moitra-Stewart'16], ...

Robust statistics

Classical Results: Statistical estimators that can recover signals after a fraction of the data is corrupted. [...[']70s], ...

2016 [<0.25 adversarial corruptions]: Computationally efficient estimators. [Lai-Rao-Vempala'16], [Diakonikolas-Kane-Kamath-Li-Moitra-Stewart'16], ...

2017 [>0.5 adversarial corruptions]: List-decodable mean estimation. [Charikar-Steinhart-Valiant'17]

Why List-decodable Regression?

Previous techniques: <0.25 adversarial corruptions [Klivans-Kothari-

Meka'18], [Diakonikolas-Kamath-Kane-Li-Steinhardt-Stewart'18], [Prasad-Suggala-Balakrishnan-Ravikumar'18], [Diakonikolas-Kong-Stewart 19] ...

Why List-decodable Regression?

Previous techniques: <0.25 adversarial corruptions [Klivans-Kothari-

Meka'18], [Diakonikolas-Kamath-Kane-Li-Steinhardt-Stewart'18], [Prasad-Suggala-Balakrishnan-Ravikumar'18], [Diakonikolas-Kong-Stewart 19] ...

List decodable regression

Unique recovery for <0.5 adversarial corruptions

Why List-decodable Regression?

Previous techniques: <0.25 adversarial corruptions [Klivans-Kothari-Meka'18], [Diakonikolas-Kamath-Kane-Li-Steinhardt-Stewart'18], [Prasad-Suggala-Balakrishnan-Ravikumar'18], [Diakonikolas-Kong-Stewart 19] ...

List decodable regression

Unique recovery for <0.5 adversarial corruptions

Generalizes Mixed Linear regression: [Deveaux'89], [Jordan-Jacobs'94], ..., [Li-Liang'18], ...

Main Result

We have an algorithm that

Takes input: n samples with αn inliers $(1 - \alpha)n$ outliers.

Returns: a list L of size $O(1/\alpha)$ s.t. $\exists \ \ell \in L$ s.t $\|\ell - \ell^*\|_2 \le 0.001$ with probability at least 0.99

Time/Sample complexity: $d^{O(1/\alpha^8)}$.

Our list size is optimal.

[K-Klivans-Kothari'19], [Raghavendra-Yau'19]

Information Theoretic Lower Bounds

We show that list-decodable regression with a constant list size (or even d-1) is **impossible** when the **underlying distribution** is not anti-concentrated.

Surprisingly, this holds even for uniform on hypercube.

Open Problems

- 1. Which distributions other than the Gaussian are **certifiably** anti-concentrated?
- 2. Robust covariance estimation of a mixture of gaussians
 - [Bakshi-Kothari'19] Show an algorithm for robust subspace recovery using techniques very similar to ones used in this paper.

Thank You!