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Random Projection (RP) Method

Data matrix X € R"*?, normalized to unit norm (all samples on unit
sphere).

Save storage by k random projections: Xg = X x R, with R € R9*k
a random matrix with i.i.d. N(0,1) entries => Xg € R™*k.

@ J-L lemma: approximate distance preservation =—>- Many
applications: clustering, classification, compressed sensing,
dimensionality reduction, etc..

“Projection4-quantization”: more storage saving. Apply (entry-wise)
scalar quantization function Q(-) by Xo = Q(Xg).

More applications: MaxCut, SimHash, 1-bit compressive sensing, etc..
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Compressive Learning + Quantization

@ We can apply learning models to projected data (Xg, Y), where Y is
the response or label = learning in the projected space Sg!

@ This is called compressive learning. It has been shown that learning
in the projected space is able to provide satisfactory performance,
while substantially reduce the computational cost, especially for
high-dimensional data.

@ We go one step further: learning with quantized random projections
(Xq, Y) = learning in the quantized projected space Sg!

@ This is called quantized compressive learning. A relatively new
topic, but is practical in applications with data compression.
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Paper Summary

@ We provide generalization error bounds (of a test sample x € X) on
three quantized compressive learning models:

o Nearest neighbor classifier
o Linear classifier (logistic regression, linear SVM, etc.)
e Linear regression

o Applications: we identify the factors that affect the generalization
performance of each model, which gives recommendations on the
choice of quantizer @ in practice.

@ Some experiments are conducted to verify the theory.
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Backgrounds
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A b-bit quantizer Qp separates the real line into M = 2 regions.
e Distortion: Do, = E[(Qp(X) — X)?] <= minimized by Lloyd-Max
(LM) quantizer.
e Maximal gap of Q on interval [a, b]: the largest gap between two
consecutive boarders of Q on [a, b].

@ Indeed, we can estimate the inner product between two samples x;
. ~ QU R)Q(R"x) .

and xo through the estimator po(x1,x2) = —+—7-——, which
might be biased. We define the debiased variance of a quantizer Q

as the variance of pg after debiasing.
o Idea: connection between the generalization of three models and
inner product estimates.
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Quantized Compressive 1-NN Classifier

@ We are interested in the risk of a classifier h, £L(h) = E[1{h(x) # y}].
e Assume (x,y) ~ D, with conditional probability n(x) = P(y = 1|x).
Bayes classifier h*(x) = 1{n(x) > 1/2} has the minimal risk.

e ho(x) = yé,l), where (X(Ql),y((;,l)) is the sample and label of nearest
neighbor of x in the quantized space Sq.

Theorem: Generalization of 1-NN Classifier

Suppose (x,y) is a test sample. Q is a uniform quantizer with A between
boarders and maximal gap gg. Under some technical conditions and with
some constants ¢, ¢p, with high probability,

B rl(ha(x))] < 2£(H () + a1 (2= T0) i (ne) Rk ook
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Quantized Compressive 1-NN Classifier: Asymptotics

Theorem: Asymptotic Error of 1-NN Classifier

T T
Let the cosine estimator pg = w, assume Vxg, xo,

E[pq(x1,x2)] = apx x, for some a > 0. As k — oo, we have
Ex,v RIL(hQ(x))] < Ex,y[L(hs(x))] + r;
no=EY o : ﬂ(cos(x,x:-) — cos x(1))
i:x;€G \/‘fx X; + f - 2C0rr(pQ(X7 Xi)? pQ(X? X(l)))gX,Xié.x,x(l)

with £§’y/k the debiased variance of pg(x,y) and G = X/x(1). L(hs(x))
is the risk of data space NN classifier, and ®(-) is the CDF of N(0,1).

)],

o Let x(1) be the nearest neighbor of a test sample x. Under mild
conditions, smaller debiased variance around p = cos(x, x(1)) leads to
smaller generalization error.
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Quantized Compressive Linear Classifier with (0,1)-loss

o H separates the space by a hyper-plane: H(x) = 1{h"x > 0}.
o ERM classifiers: H(x) = 1{h"x > 0}, Ho(x) = ]l{/A'lZ?—Q(RTX) > 0}.

Theorem: Generalization of linear classifier

Under some technical conditions, with probability (1 — 26),

N A . 1 o
PrlHq(x) # y] < L0,1)(S, h) + i Z fi,@(pi) + Ci,n,s,
i=1

where fi o(pi) = CD(—@), with p; the cosine between training sample

x; and ERM classifier h in the data space, and ggi/k the debiased variance
Q(XITR)Q(RTXQ)
k

of ﬁQ = at p;.

@ Small debiased variance around p = 0 lowers the bound.
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Quantized Compressive Least Squares (QCLS) Regression

o Fixed design: Y = XT3 + ¢, with x; fixed, € i.i.d. N(0,7)
o L(B) = ;EvIIlY = XBI%L La(Ba) = 7Ev rIIlY — Q(XR)BolI?].
o L(B) = 1IY = XBI?, Lo(Be) = 3IY — JzQ(XR)Bol. (given R)

Theorem: Generalization of QCLS

Let 5* = argmin L(3) and B’(‘\) = argmin Lo(B). Let ¥ = XT X /k, k < n.
BERY BERK
Dg is the distortion of Q. Then we have

A k 1
Ev rlLo(B)] — L(8") < v + 118" (1)

where Q = [gz(’f:—z;;)DrQ -1+ ﬁld, with [|w]q = VwTQw the
Mahalanobis norm.

@ Smaller distortion lowers the error bound.
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Implications

@ 1-NN classification: In most applications, we should choose the

quantizer with small debiased variance of inner product estimator
N . Q(RTX)TQ(RT_V) . h h . | . . N I. . h
pQ = 5 in high similarity region. = Normalizing the

quantized random projections (Xg) may help, see ref

Xiaoyun Li and Ping Li, Random Projections with Asymmetric
Quantization, NeurlPS 20109.

o Linear classification: we should choose the quantizer with small

Q(RTX)ZQ(RT}/)

debiased variance of inner product estimate pg = at

around p = 0. = First choice: Lloyd-Max quantizer.

o Linear regression: we should choose the quantizer with small
distortion Dg. == First choice: Lloyd-Max quantizer.
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Experiments

Dataset ‘ # samples # features # classes Mean 1-NN p

BASEHOCK 1993 4862 2 0.6
orlraws10P 100 10304 10 0.9
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Figure 1: Empirical debiased variance of three quantizers.

Mean 1-NN p is the estimated cos(x, x(1)) from training set.
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Quantized Compressive 1-NN Classification

Claim: smaller debiased variance at around p = cos(x, x(1) is better.
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Figure 2: Quantized compressive 1-NN classification.

@ Target p should be around:
BASEHOCK: 0.6, where 1-bit quantizer has largest debiased variance.
Orlraws10P: 0.9, where 1-bit quantizer has smallest debiased variance.

1-bit quantizer may generalize better than using more bits!
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Quantized Compressive Linear SVM

Claim: smaller debiased variance at p = 0 is better.
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Figure 3: Quantized compressive linear SVM.

@ At p =0, red quantizer has much larger debiased variance than others
= Lowest test accuracy on both datasets.
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Quantized Compressive Linear Regression
Claim: smaller distortion is better.
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Figure 4: Test MSE of QCLS.
Blue: uniform quantizers. Red: Lloyd-Max (LM) quantizers.
@ LM quantizer always outperforms uniform quantizer.

@ The order of test error agrees with the order of distortion.
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