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Random Projection (RP) Method

Data matrix X ∈ Rn×d , normalized to unit norm (all samples on unit
sphere).

Save storage by k random projections: XR = X × R, with R ∈ Rd×k

a random matrix with i.i.d. N(0, 1) entries =⇒ XR ∈ Rn×k .

J-L lemma: approximate distance preservation =⇒ Many
applications: clustering, classification, compressed sensing,
dimensionality reduction, etc..

“Projection+quantization”: more storage saving. Apply (entry-wise)
scalar quantization function Q(·) by XQ = Q(XR).

More applications: MaxCut, SimHash, 1-bit compressive sensing, etc..
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Compressive Learning + Quantization

We can apply learning models to projected data (XR ,Y ), where Y is
the response or label =⇒ learning in the projected space SR !

This is called compressive learning. It has been shown that learning
in the projected space is able to provide satisfactory performance,
while substantially reduce the computational cost, especially for
high-dimensional data.

We go one step further: learning with quantized random projections
(XQ ,Y ) =⇒ learning in the quantized projected space SQ !

This is called quantized compressive learning. A relatively new
topic, but is practical in applications with data compression.

Xiaoyun Li, Ping Li NeurIPS 2019 3 / 14



Paper Summary

We provide generalization error bounds (of a test sample x ∈ X ) on
three quantized compressive learning models:

Nearest neighbor classifier
Linear classifier (logistic regression, linear SVM, etc.)
Linear regression

Applications: we identify the factors that affect the generalization
performance of each model, which gives recommendations on the
choice of quantizer Q in practice.

Some experiments are conducted to verify the theory.
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Backgrounds

A b-bit quantizer Qb separates the real line into M = 2b regions.

Distortion: DQb
= E [(Qb(X )− X )2] ⇐⇒ minimized by Lloyd-Max

(LM) quantizer.

Maximal gap of Q on interval [a, b]: the largest gap between two
consecutive boarders of Q on [a, b].

Indeed, we can estimate the inner product between two samples x1

and x2 through the estimator ρ̂Q(x1, x2) =
Q(xT1 R)Q(RT x2)

k , which
might be biased. We define the debiased variance of a quantizer Q
as the variance of ρ̂Q after debiasing.

Idea: connection between the generalization of three models and
inner product estimates.
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Quantized Compressive 1-NN Classifier

We are interested in the risk of a classifier h, L(h) = E [1{h(x) 6= y}].
Assume (x , y) ∼ D, with conditional probability η(x) = P(y = 1|x).
Bayes classifier h∗(x) = 1{η(x) > 1/2} has the minimal risk.

hQ(x) = y
(1)
Q , where (x

(1)
Q , y

(1)
Q ) is the sample and label of nearest

neighbor of x in the quantized space SQ .

Theorem: Generalization of 1-NN Classifier

Suppose (x , y) is a test sample. Q is a uniform quantizer with 4 between
boarders and maximal gap gQ . Under some technical conditions and with
some constants c1, c2, with high probability,

EX ,Y [L(hQ(x))] ≤ 2L(h∗(x)) + c1(
4
gQ

√
1 + ω

1− ω
)

k
k+1 (ne)−

1
k+1

√
k +

c24
√
k√

1− ω
.
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Quantized Compressive 1-NN Classifier: Asymptotics

Theorem: Asymptotic Error of 1-NN Classifier

Let the cosine estimator ρ̂Q =
Q(xT1 R)Q(RT x2)

k , assume ∀x1, x2,
E [ρ̂Q(x1, x2)] = αρx1,x2 for some α > 0. As k →∞, we have

EX ,Y ,R [L(hQ(x))] ≤ EX ,Y [L(hS(x))] + rk ,

rk = E [
∑
i :xi∈G

Φ
( √

k(cos(x , xi )− cos(x , x (1)))√
ξ2
x ,xi

+ ξ2
x ,x(1) − 2Corr(ρ̂Q(x , xi ), ρ̂Q(x , x (1)))ξx ,xi ξx ,x(1)

)
],

with ξ2
x ,y/k the debiased variance of ρ̂Q(x , y) and G = X/x (1). L(hS(x))

is the risk of data space NN classifier, and Φ(·) is the CDF of N(0, 1).

Let x (1) be the nearest neighbor of a test sample x . Under mild
conditions, smaller debiased variance around ρ = cos(x , x (1)) leads to
smaller generalization error.
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Quantized Compressive Linear Classifier with (0,1)-loss

H separates the space by a hyper-plane: H(x) = 1{hT x > 0}.
ERM classifiers: Ĥ(x) = 1{ĥT x > 0}, ĤQ(x) = 1{ĥTQQ(RT x) > 0}.

Theorem: Generalization of linear classifier

Under some technical conditions, with probability (1− 2δ),

Pr [ĤQ(x) 6= y ] ≤ L̂(0,1)(S , ĥ) +
1

δn

n∑
i=1

fk,Q(ρi ) + Ck,n,δ,

where fk,Q(ρi ) = Φ(−
√
k|ρi |
ξρi

), with ρi the cosine between training sample

xi and ERM classifier ĥ in the data space, and ξ2
ρi
/k the debiased variance

of ρ̂Q =
Q(xT1 R)Q(RT x2)

k at ρi .

Small debiased variance around ρ = 0 lowers the bound.
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Quantized Compressive Least Squares (QCLS) Regression

Fixed design: Y = XTβ + ε, with xi fixed, ε i.i.d. N(0, γ)

L(β) = 1
nEY [‖Y − Xβ‖2], LQ(βQ) = 1

nEY ,R [‖Y − Q(XR)βQ‖2].

L̂(β) = 1
n‖Y − Xβ‖2, L̂Q(βQ) = 1

n‖Y −
1√
k
Q(XR)βQ‖2. (given R)

Theorem: Generalization of QCLS

Let β̂∗ = argmin
β∈Rd

L̂(β) and β̂∗Q = argmin
β∈Rk

L̂Q(β). Let Σ = XTX/k , k < n.

DQ is the distortion of Q. Then we have

EY ,R [LQ(β̂∗Q)]− L(β∗) ≤ γ k
n

+
1

k
‖β∗‖2

Ω, (1)

where Ω = [
ξ2,2−1+DQ

(1−DQ)2 − 1]Σ + 1
1−DQ

Id , with ‖w‖Ω =
√
wTΩw the

Mahalanobis norm.

Smaller distortion lowers the error bound.
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Implications

1-NN classification: In most applications, we should choose the
quantizer with small debiased variance of inner product estimator

ρ̂Q = Q(RT x)TQ(RT y)
k in high similarity region. =⇒ Normalizing the

quantized random projections (XQ) may help, see ref

Xiaoyun Li and Ping Li, Random Projections with Asymmetric
Quantization, NeurIPS 2019.

Linear classification: we should choose the quantizer with small

debiased variance of inner product estimate ρ̂Q = Q(RT x)TQ(RT y)
k at

around ρ = 0. =⇒ First choice: Lloyd-Max quantizer.

Linear regression: we should choose the quantizer with small
distortion DQ . =⇒ First choice: Lloyd-Max quantizer.
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Experiments

Dataset # samples # features # classes Mean 1-NN ρ

BASEHOCK 1993 4862 2 0.6
orlraws10P 100 10304 10 0.9
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Figure 1: Empirical debiased variance of three quantizers.

Mean 1-NN ρ is the estimated cos(x , x (1)) from training set.
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Quantized Compressive 1-NN Classification

Claim: smaller debiased variance at around ρ = cos(x , x (1) is better.
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Figure 2: Quantized compressive 1-NN classification.

Target ρ should be around:
BASEHOCK: 0.6, where 1-bit quantizer has largest debiased variance.
Orlraws10P: 0.9, where 1-bit quantizer has smallest debiased variance.

1-bit quantizer may generalize better than using more bits!
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Quantized Compressive Linear SVM

Claim: smaller debiased variance at ρ = 0 is better.
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Figure 3: Quantized compressive linear SVM.

At ρ = 0, red quantizer has much larger debiased variance than others
=⇒ Lowest test accuracy on both datasets.
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Quantized Compressive Linear Regression

Claim: smaller distortion is better.
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Figure 4: Test MSE of QCLS.

Blue: uniform quantizers. Red: Lloyd-Max (LM) quantizers.

LM quantizer always outperforms uniform quantizer.

The order of test error agrees with the order of distortion.
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