
Graph Based- Discriminators 
Sample Complexity and 

Expressiveness
Roi Livni and Yishay Mansour



Discrimination

• A discriminator is provided with
two data sets.
• 𝑆1 ∼ 𝑃1
• 𝑆2 ∼ 𝑃2

• Decide if 𝑃1 and 𝑃2 are different.

• If not, provide a certificate.



Motivation: Synthetic Data Generation

Goodfellow et al.’14

https://thispersondoesnotexist.com/



Discrimination: Learning Lens

• A learner is defined by a class 𝐻 ⊆ 0,1 𝑋

• Given labelled sample from some distribution 𝑃 over 𝑋 × 0,1

• Learner returns ℎ ∈ 𝐻 such that

𝑃(𝑥,𝑦) ℎ 𝑥 ≠ 𝑦 ≤ min
ℎ∈𝐻

𝑃(𝑥,𝑦) ℎ 𝑥 ≠ 𝑦 + 𝜖

• If sup
ℎ∈𝐻

𝐸𝑥∼𝑃1 ℎ 𝑥 − 𝐸𝑥∼𝑃2 ℎ 𝑥 > 𝜖

• Learner succeeds.



Learning as a discrimination task

• Discriminator is defined by a class of distinguishers 𝐻 ⊆ 0,1 𝑋

Integral Probability Metric:

𝐼𝑃𝑀𝐻 𝑃1, 𝑃2 = sup
ℎ∈𝐻

|𝐸𝑥∼𝑃1 ℎ 𝑥 − 𝐸𝑥∼𝑃2 ℎ 𝑥 |

• If 𝐼𝑃𝑀𝐻 𝑃1, 𝑃2 > 𝜖 -- return ℎ ∈ 𝐻 with 𝐼𝑃𝑀𝐻 𝑃1, 𝑃2 > 𝜖/2

• If not, may fail. (return EQUIVALENT).

(Muller’97)



Higher order discrimination

• Instead of considering hypotheses classes, what if we take other types 
of statistical tests:

• Example: Collision test

• Estimate probability to draw the same point twice. If different–
declare distinct.

• If not, may fail (return equivalent).



Higher order discrimination

• Instead of considering hypotheses classes, what if we take other types 
of distinguishers:

• More generally: Take a family G = {𝑔: 𝑔: 𝑋2 → 0,1 }

𝐼𝑃𝑀𝐺 𝑃1, 𝑃2 = sup
𝑔∈𝐺

𝐸 𝑥1,𝑥2)∼𝑃1
2 𝑔 𝑥1, 𝑥2 − 𝐸 𝑥1,𝑥2)∼𝑃2

2 𝑔 𝑥1, 𝑥2

• Are graph-based distinguishers stronger than classical distinguishers?

• Sample Complexity?



Expressive power of graph-based discriminators

THEOREM: Let X be an infinite domain. There exists a graph g such that: For 
every hypothesis class H with finite VC dimension and 𝜖 > 0, there are two 

distributions 𝑃𝑠𝑦𝑛, 𝑃𝑟𝑒𝑎𝑙 such that
𝐼𝑃𝑀𝐻 𝑝𝑠𝑦𝑛, 𝑝𝑟𝑒𝑎𝑙 < 𝜖

and,

𝐸(𝑥1,𝑥2)∼𝑝𝑠𝑦𝑛2 [𝑔 𝑥1,𝑥2 )] − 𝐸(𝑥1,𝑥2)∼𝑝𝑟𝑒𝑎𝑙
2 [𝑔(𝑥1, 𝑥2)] >

1

4

(L, Mansour’19)



Finite Version

● If |X|=N, there is a graph g such that for every class H there are two 
distributions that are H-indistinguishable, g-distinguishable unless:

○ 𝑉𝐶 𝐻 = Ω(𝜖2 log𝑁) (L, Mansour’19)

● Optimal: For every graph-based class G with finite capacity there is a 
hypothesis class H with VC dimension 𝑂(𝜖2 log𝑁) such that

𝐼𝑃𝑀𝐶 𝑝𝑠𝑦𝑛, p𝑟𝑒𝑎𝑙 >
1

4
⇒ 𝐼𝑃𝑀𝐺 𝑝𝑠𝑦𝑛, p𝑟𝑒𝑎𝑙 > 𝜖 (Alon, L, Mansour)

○ Given a graph g how many sets are needed to separate every dense set from every 
sparse set?



Sample complexity of graph-based discriminators

● For a family of graph G.
● Given samples from two unknown distributions 𝑃1, 𝑃2: Decide if

● How many examples are needed?

● Recall: 

○ For an hypothesis class, a discriminator can decide if 𝐼𝑃𝑀𝐻 𝑃1, 𝑃2 > 𝜖, if and 
only if H has finite VC dimension.

○ Θ 𝑉𝐶 𝐻 /𝜖2 are needed

𝐼𝑃𝑀𝐺 𝑃1, 𝑃2 > 𝜖



The graph-VC dimension

● The graph VC dimension is obtained by considering the projections of the 
graph by fixing a vertex. Namely, for every x consider the hypothesis class

𝐻𝑥 = 𝑔 𝑥,⋅ : 𝑋 → 0,1 : 𝑔 ∈ 𝐺

● Then: 𝑔𝑉𝐶 𝐶 = sup
𝑥∈𝑋

𝑉𝐶(𝐻𝑥)

● 𝑂(𝑔𝑉𝐶 𝐶 ) are sufficient.
● Ω( 𝑔𝑉𝐶 𝐶 ) are necessary. (L, Mansour’19)


