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Discrimination

e A discriminator is provided with
two data sets.

*51~P
* 5, ~ P,

* Decide if P; and P, are different.
* If not, provide a certificate.




Motivation: Synthetic Data Generation




Discrimination: Learning Lens
* Alearneris defined by a class H € {0,1}*
* Given labelled sample from some distribution P over X x {0,1}

* Learner returns h € H such that

Pixyy [h(x) # y] < rrflelg Pixyy [h(x) # y] + €

 1f sup | Eyp, [M(O)] = Eyp, [H()]| > €
heH

* Learner succeeds.



Learning as a discrimination task

* Discriminator is defined by a class of distinguishers H < {0,1}*

Integral Probability Metric:
(Muller’97)

IPMy (P, P,) = sup |Ex~p, [R(x)] — Exp,[R(x)]|

* If IPMy(Py, P,) > € --return h € H with IPMy(Py,P,) > €/2
* If not, may fail. (return EQUIVALENT).




Higher order discrimination

* Instead of considering hypotheses classes, what if we take other types
of statistical tests:

* Example: Collision test

* Estimate probability to draw the same point twice. If different—
declare distinct.

* If not, may fail (return equivalent).



Higher order discrimination

* Instead of considering hypotheses classes, what if we take other types
of distinguishers:

* More generally: Take a family G = {g: g: X? - {0,1}}

IPMG (Pl) PZ) — SlélIG) E(xl x2)~P12)[g(x1) xZ)] o E(xl x2)~P22)[g(x1' xZ)]
g , )

* Are graph-based distinguishers stronger than classical distinguishers?
 Sample Complexity



Expressive power of graph-based discriminators

THEOREM: Let X be an infinite domain. There exists a graph g such that: For
every hypothesis class H with finite VC dimension and € > 0, there are two
distributions Psyp, Preq; such that

IPMy (psyn: preal) <€
and,

E(xl,x2)~p§yn[g(x1,x2))] B E(xl,x2)~p,%eal [g (xl’ xZ)] > Z

(L, Mansour’19)



Finite Version

e If |X]|=N, thereis a graph g such that for every class H there are two
distributions that are H-indistinguishable, g-distinguishable unless:

o VC(H) = Q(e?logN) (L, Mansour’19)

o Optimal: For every graph-based class G with finite capacity there is a
hypothesis class H with VC dimension O (e log N) such that

1
IPMc(Psyn: Prear) > 7 = IPMg(Dsyn, Preat) > € (Alon, L, Mansour)



Sample complexity of graph-based discriminators

e For a family of graph G.
e Given samples from two unknown distributions P;, P,: Decide if
IPM;(Py,Py) > €

e How many examples are needed?

e Recall:

o For an hypothesis class, a discriminator can decide if IPMy (P, P,) > ¢, if and
only if H has finite VC dimension.

- O(C(H)/e?) are needed



The graph-VC dimension

e The graph VC dimension is obtained by considering the projections of the
graph by fixing a vertex. Namely, for every x consider the hypothesis class

H,={9(x,):X - {0,1}: g € G}

e Then:gVC (C) =supVC(H,)

xXeX

e 0(gVC(C)) are sufficient.
e Q(/gVC(C)) are necessary. (L, Mansour’19)




