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● Problem of interest: 

○ Multiagent evaluation under incomplete information

○ >2-player, general-sum games with noisy payoffs

Motivation

Agent evaluation 
Algorithm

Estimated 
ranking vector

Training

Playing

Meta-game 
synthesis Game 

simulation

● Prototypical application: multiagent iterative training

Train agents via simulations in the underlying game

Construct meta-game comparing performance of all 

agent match-ups

Evaluate (i.e., rank or score) agents in the meta-game 

1

2

3

1
2

3

Estimated 
payoff table



● Problem of interest: 

○ Multiagent evaluation under incomplete information

○ >2-player, general-sum games with noisy payoffs

Motivation

Agent evaluation 
Algorithm

Estimated 
ranking vector

Training

Playing

Meta-game 
synthesis Game 

simulation

● Prototypical application: multiagent iterative training

Train agents via simulations in the underlying game

Construct meta-game comparing performance of all 

agent match-ups

Evaluate (i.e., rank or score) agents in the meta-game 

1

2

3

1
2

3

Estimated 
payoff table



1. Construct response graph capturing player-wise evolutionary deviations: graph over the pure 

strategy profiles, with directed edges if deviating player’s new strategy is a better-response

Multiagent Evaluation at a Glance
𝜶-Rank Overview
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From Uncertainty in Payoffs to Rankings

● Key question: given confidence bounds on the payoff table entries, can we efficiently compute 

a range of plausible 𝜶-Rank weights for the agents?



From Uncertainty in Payoffs to Rankings

● Key question: given confidence bounds on the payoff table entries, can we efficiently compute 

a range of plausible 𝜶-Rank weights for the agents?

● Top-ranked agent when no payoff uncertainty

● Takeaway: need careful consideration of payoff uncertainties when ranking agents



Contributions

Static sample complexity bounds quantifying # of interactions needed to confidently rank agents1

2 Algorithm that adaptively simulates agent interactions that are most informative for ranking

3 Analysis of the propagation of payoff uncertainty to the final rankings computed

● Sample complexity guarantees & efficient alg. for bounding rankings given payoff uncertainty



 Details & evaluations at poster #220!. 


