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Our work

This is the first theoretical paper that analyzes vanilla GDA
INn Nnon-convex non-concave zero-sum games:

Takeaways:

i) GDA does not solve always zero-sum games

ii) Many distinct failure modes provably exist
including cycles and spurious equilibria.

iii) To understand these settings we need physics +
non-convex optimization combined.



Motivation

i) Generative Adversarial Networks

ii) Adversarial Learning
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iii) Multi-agent Reinforcement learning




Prior work: Bilinear Games

Lero Sum Crame
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This work: Hidden Bilinear Games

Hidden Zero Sum Grame
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s This is a well-defined problem.

% The hidden structure identifies the correct equilibrium that is also meaningful.
o It is clear that the min/max solution does not depend on the operator.

% GDA corresponds to the indirect competition of players in the parameter level.



Our Results

G DA resulks in a varie%v oﬁf behaviors
antithetical to converqgence

i) Convergence to spurious equilibria corresponding to
stationary points of the operators F and G.

ii) Cyecling behavior around the equilibrium for
continuous time GDA.

iii) Divergence from equilibrium fo discrete time GDA.



Our Techniques

< Poincaré Recurrence Theorem

% Energy conservation

< Stable-Center Manifold Theorem

w atrd many more



Come to our pas%m
Wed Spm #HC R0
To hear mwore




