

"DEQ"

# Deep Equilibrium Models

#### **Shaojie Bai**

Carnegie Mellon University

joint work with J. Zico Kolter (CMU/Bosch) and Vladlen Koltun (Intel)

NeurIPS 2019

TL;DR: One (implicit) layer is all you need.

### **Outline of This Talk**



We can replace many classes of deep models with a single layer, keep the number of parameters the same, and lose no **representational** capacity.

Requires us to (re-)consider deep networks implicitly, with an approach that we call the **deep equilibrium (DEQ) model**.

Works as well (or better) than existing models on large-scale sequence tasks while using only constant memory.

## Weight-Tied, Input-Injected Networks



Traditional layer:

Traditional layer:
$$\mathbf{z}^{[i+1]} = f_{\theta_i}(\mathbf{z}^{[i]}) = \sigma(W_i \mathbf{z}^{[i]} + b_i)$$
(just a simple example)



Weight-tied input-injected layer:

$$\mathbf{z}^{[i+1]} = f_{\theta}(\mathbf{z}^{[i]}; \mathbf{x}) = \sigma(W\mathbf{z}^{[i]} + U\mathbf{x} + b)$$

Isn't weight-tying a big restriction?

- **Theoretically, no**: We show that any deep feedforward network can be represented by a weight-tied, input-injected network of equivalent depth.

- **Empirically, no**: The (many) recent successes of weight-tied models: TrellisNet [Bai et al., ICLR 2019], Universal Transformer [Dehghani et al., ICLR 2019], ALBERT [Lan et al., preprint].

## **Equilibrium Points, and the DEQ Model**

We now can think of a deep network as repeated applications of some function

$$\mathbf{z}^{[i+1]} = f_{\theta}(\mathbf{z}^{[i]}; \mathbf{x})$$

In practice (a bit more on this point shortly), after these types of models converge to an equilibrium point (i.e., an "infinite depth" network)

$$\mathbf{z}^{\star} = f_{\theta}(\mathbf{z}^{\star}; \mathbf{x})$$

**Deep Equilibrium (DEQ) Models**: Find this equilibrium point directly via <u>root-finding</u> (e.g., Newton/quasi-Newton methods) rather than iterating the forward model. Backpropagate via implicit differentiation.

## A Formal Summary of the DEQ Approach

Define a single layer  $f_{\theta}(\mathbf{z}; \mathbf{x})$ .

**Forward pass**: Given an input x, compute the equilibrium point  $z^*$ , such that

$$f_{\theta}(\mathbf{z}^{\star}; \mathbf{x}) - \mathbf{z}^{\star} = 0$$

(via any black-box root solver; e.g. Broyden's method)

**Backward pass**: Implicitly differentiate through the equilibrium state to form gradients:

$$\frac{\partial \ell}{\partial (\cdot)} = \frac{\partial \ell}{\partial \mathbf{z}^{\star}} \left( I - \frac{\partial f_{\theta}}{\partial \mathbf{z}^{\star}} \right)^{-1} \frac{\partial f_{\theta}}{\partial (\cdot)}$$

Jacobian at the equilibrium

Virtually always exists in practice (examples later)



Gradient of one layer

#### FAQs

Q: Is DEQ related to the decade-old attractor network, and the recurrent backprop (RBP) ideas?

- **Yes!** Our main contributions here are conceptual and empirical: 1) We advocate for replacing general, modern, highly structured networks with single-layer equilibrium models, not using simple recurrent cells; and 2) We demonstrate that with these networks, the method can achieve SOTA performance with vast reduction in memory.

Q: Why not stack *these* deep equilibrium "implicit" layers (with potentially different functions)?

- **No**! Stacked DEQs can be <u>equivalently</u> represented as a single (wider) DEQ; i.e., "deep" DEQs doesn't give you more; it's only a matter of designing  $f_{\theta}$ .

Intuitively,  $\exists \ \Gamma_{\Theta} \ \mathrm{s.t.} \ \mathrm{DEQ}_{\Gamma_{\Theta}} = \mathrm{DEQ}_{h_{\theta_2}} \circ \mathrm{DEQ}_{f_{\theta_1}}$ 

#### FAQs

Q: What are the relative time/memory tradeoffs?

- Typically ~2-2.5x slower to train, ~1.5-2x slower for inference (root finding takes slightly longer than iterating a small fixed # of forward steps).

**Forward pass**: black-box root solving (e.g., fast Quasi-Newton methods)

**Backward pass**: One-step multiplication with the inverse Jacobian at equilibrium

- **Constant memory consumption**: no need to store any intermediate value (i.e., no growth at all with "depth"; O(1)). Only need to store  $\mathbf{x}, \mathbf{z}^*, \theta$ .

## **DEQs for Sequence Modeling**

- One can easily extend the methods above to create DEQ versions of all common sequence modeling architectures.
- We specifically provide two *instantiations of DEQ* based on two very different SOTA sequence modeling architectures:
  - 1) **DEQ-TrellisNet**: equilibrium version of TrellisNet architecture [Bai et al., ICLR 2019], a type of weight-tied temporal convolutions that generalizes RNNs
  - 2) **DEQ-Transformer**: equilibrium version of Transformer architecture [Vaswani et al., NIPS 2017], with weight-tied multi-head selfattention [Dehghani et al., ICLR 2019]



$$\mathbf{z}_{1:T}^{\star} = f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})$$

$$= \mathsf{RootFind}(g_{\theta}; \mathbf{x}_{1:T})$$

## Large-Scale Benchmarks

#### Word-level Language Modeling on WikiText-103 (WT103)



More results in the paper.

## Summary, Thoughts and Challenges

- DEQ represents the largest-scale practical application of implicit layers in deep learning of which we are aware.
- DEQ computes an "infinite-depth" network. DEQ's forward pass relies on a direct root solving; its backward pass relies only on the equilibrium point, not on any of the intermediate "hidden features". Memory needed to train DEQ is therefore constant (i.e., equivalent to that of 1 layer).
- DEQ performs competitively with SOTA architectures, but with up to 90% reduction in memory cost.
- How should we understand depth in deep networks?
- Let the objective of a model be implicitly defined (e.g., "the equilibrium")?

Interested in DEQ? Stop by our poster at Exhibition Hall B+C #137 (right after this talk) ;-)