
Deep Equilibrium Models
Shaojie Bai 

Carnegie Mellon University

�1

NeurIPS 2019

“DEQ”

joint work with J. Zico Kolter (CMU/Bosch) and Vladlen Koltun (Intel)

TL;DR: One (implicit) layer is all you need.

Outline of This Talk
�2

. . .

x
z[1] z[2] z[L]

x
z?

We can replace many classes of
deep models with a single layer,
keep the number of parameters the
same, and lose no representational
capacity.

Requires us to (re-)consider deep
networks implicitly, with an
approach that we call the deep
equilibrium (DEQ) model.

Works as well (or better) than
existing models on large-scale
sequence tasks while using only
constant memory.

Weight-Tied, Input-Injected Networks
�3

✓0 ✓1 ✓2 ✓L�1
. . .

x
z[1] z[2]

. . .

x
z[1] z[2]

✓ ✓ ✓

z[L]

z[L]

Weight-tied input-injected layer:
z[i+1] = f✓(z[i];x) = �(Wz[i] + Ux+ b)

U

Forward pass
Backward pass

(just a simple example)

Isn’t weight-tying a big restriction?

- Theoretically, no: We show that
any deep feedforward network can
be represented by a weight-tied,
input-injected network of equivalent
depth.

- Empirically, no: The (many) recent
successes of weight-tied models:
TrellisNet [Bai et al., ICLR 2019],
Universal Transformer [Dehghani et al.,
ICLR 2019], ALBERT [Lan et al., preprint].

Traditional layer:
z[i+1] = f✓i(z

[i]) = �(Wiz[i] + bi)

Equilibrium Points, and the DEQ Model
�4

We now can think of a deep network as repeated applications of some function

z[i+1] = f✓(z
[i];x)

In practice (a bit more on this point shortly), after these types of models
converge to an equilibrium point (i.e., an “infinite depth" network)

lim
i!1

z[i] = lim
i!1

f✓(z
[i];x) = z? = f✓(z

?;x)

Deep Equilibrium (DEQ) Models: Find this equilibrium point directly via root-
finding (e.g., Newton/quasi-Newton methods) rather than iterating the forward
model. Backpropagate via implicit differentiation.

A Formal Summary of the DEQ Approach
�5

Define a single layer .

Forward pass: Given an input ,
compute the equilibrium point ,
such that

(via any black-box root solver; e.g.
Broyden’s method)

Backward pass: Implicitly
differentiate through the
equilibrium state to form gradients:

Jacobian at the
equilibrium

Gradient of one layer

f✓(z;x)

x

z?

f✓(z
?;x)� z? = 0

x
z?

f✓(z
?;x)

(via RootFind(f✓ � I;x)

Virtually always exists in practice  
(examples later)

@`

@(·) =
@`

@z?

✓
I � @f✓

@z?

◆�1 @f✓
@(·)

FAQs
�6

Q: Why not stack these deep equilibrium "implicit" layers (with potentially
different functions)?

- No! Stacked DEQs can be equivalently represented as a single (wider)
DEQ; i.e., “deep” DEQs doesn’t give you more; it’s only a matter of
designing .f✓

Q: Is DEQ related to the decade-old attractor network, and the recurrent
backprop (RBP) ideas?

- Yes! Our main contributions here are conceptual and empirical: 1) We
advocate for replacing general, modern, highly structured networks with
single-layer equilibrium models, not using simple recurrent cells; and 2) We
demonstrate that with these networks, the method can achieve SOTA
performance with vast reduction in memory.

9 �⇥ s.t. DEQ�⇥
= DEQh✓2

�DEQf✓1
Intuitively,

FAQs
�7

Q: What are the relative time/memory tradeoffs?

- Constant memory consumption: no need to store any intermediate value
(i.e., no growth at all with “depth”; O(1)). Only need to store

Forward pass: black-box root solving
(e.g., fast Quasi-Newton methods)

Backward pass: One-step multiplication
with the inverse Jacobian at equilibrium

x, z?, ✓.

- Typically ~2-2.5x slower to train, ~1.5-2x slower for inference (root
finding takes slightly longer than iterating a small fixed # of forward steps).

DEQs for Sequence Modeling
�8

- One can easily extend the methods above to create DEQ versions of all
common sequence modeling architectures.

- We specifically provide two instantiations of DEQ based on two very different
SOTA sequence modeling architectures:

1) DEQ-TrellisNet: equilibrium version of
TrellisNet architecture [Bai et al., ICLR 2019], a
type of weight-tied temporal convolutions
that generalizes RNNs

2) DEQ-Transformer: equilibrium version
of Transformer architecture [Vaswani et al.,
NIPS 2017], with weight-tied multi-head self-
attention [Dehghani et al., ICLR 2019]

. . .x1 x2 x3 xT

. . .y1 y2 y3 yT

. . .z⋆1 z⋆2 z⋆3 z⋆T

z?1:T = f✓(z
?
1:T ;x1:T)

= RootFind(g✓;x1:T)

More details in the paper.

Large-Scale Benchmarks
�9

Word-level Language Modeling on WikiText-103 (WT103)

Pe
rp

le
xi

ty

35.8
32.4

29.2 29

23.6 23.2

18.7

4.8
1.1

24.7

3.3

9.0

3.7

12.0

Transformer-XL
Small

DEQ-Transformer
Small

70-layer TrellisNet DEQ-TrellisNet Transformer-XL
Medium

DEQ-Transformer
Medium

Transformer-XL
XLarge (TPU)

Perplexity Memory (GB)

5M (Non-Embedding) Params 45M Params 70M Params 224M Params

1) Benchmarked on sequence length 150  
2) Does not include memory for word embeddings

More results in the paper.

Summary, Thoughts and Challenges
�10

- DEQ represents the largest-scale practical application of implicit layers in deep
learning of which we are aware.

- DEQ computes an “infinite-depth" network. DEQ’s forward pass relies on a
direct root solving; its backward pass relies only on the equilibrium point, not
on any of the intermediate “hidden features". Memory needed to train DEQ is
therefore constant (i.e., equivalent to that of 1 layer).

- DEQ performs competitively with SOTA architectures, but with up to 90%
reduction in memory cost.

- How should we understand depth in deep networks?

- Let the objective of a model be implicitly defined (e.g., “the equilibrium")?

Shaojie Bai shaojieb@cs.cmu.edu https://github.com/locuslab/deq @shaojieb

Interested in DEQ? Stop by our poster at  
Exhibition Hall B+C #137 (right after this talk) ;-)

mailto:shaojieb@cs.cmu.edu

