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TL;DR: One (implicit) layer is all you need.



Outline of This Talk
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We can replace many classes of 
deep models with a single layer, 
keep the number of parameters the 
same, and lose no representational 
capacity.

Requires us to (re-)consider deep 
networks implicitly, with an 
approach that we call the deep 
equilibrium (DEQ) model.

Works as well (or better) than 
existing models on large-scale 
sequence tasks while using only 
constant memory.



Weight-Tied, Input-Injected Networks
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Weight-tied input-injected layer:
z[i+1] = f✓(z[i];x) = �(Wz[i] + Ux+ b)

U

Forward pass
Backward pass

(just a simple example)

Isn’t weight-tying a big restriction? 

- Theoretically, no: We show that 
any deep feedforward network can 
be represented by a weight-tied, 
input-injected network of equivalent 
depth.

- Empirically, no: The (many) recent 
successes of weight-tied models: 
TrellisNet [Bai et al., ICLR 2019], 
Universal Transformer [Dehghani et al., 
ICLR 2019], ALBERT [Lan et al., preprint].

Traditional layer:
z[i+1] = f✓i(z

[i]) = �(Wiz[i] + bi)



Equilibrium Points, and the DEQ Model
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We now can think of a deep network as repeated applications of some function

z[i+1] = f✓(z
[i];x)

In practice (a bit more on this point shortly), after these types of models 
converge to an equilibrium point (i.e., an “infinite depth" network)

lim
i!1

z[i] = lim
i!1

f✓(z
[i];x) = z? = f✓(z

?;x)

Deep Equilibrium (DEQ) Models: Find this equilibrium point directly via root-
finding (e.g., Newton/quasi-Newton methods) rather than iterating the forward 
model. Backpropagate via implicit differentiation.



A Formal Summary of the DEQ Approach
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Define a single layer               .

Forward pass: Given an input    ,   
compute the equilibrium point     , 
such that 

(via any black-box root solver; e.g. 
Broyden’s method)

Backward pass: Implicitly 
differentiate through the 
equilibrium state to form gradients:

Jacobian at the 
equilibrium

Gradient of one layer

f✓(z;x)
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(via                                RootFind(f✓ � I;x)

Virtually always exists in practice  
(examples later)
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FAQs
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Q: Why not stack these deep equilibrium "implicit" layers (with potentially 
different functions)?

- No! Stacked DEQs can be equivalently represented as a single (wider) 
DEQ; i.e., “deep” DEQs doesn’t give you more; it’s only a matter of 
designing     .f✓

Q: Is DEQ related to the decade-old attractor network, and the recurrent 
backprop (RBP) ideas?

- Yes! Our main contributions here are conceptual and empirical: 1) We 
advocate for replacing general, modern, highly structured networks with 
single-layer equilibrium models, not using simple recurrent cells; and 2) We 
demonstrate that with these networks, the method can achieve SOTA 
performance with vast reduction in memory.

9 �⇥ s.t. DEQ�⇥
= DEQh✓2

�DEQf✓1
Intuitively, 



FAQs
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Q: What are the relative time/memory tradeoffs?

- Constant memory consumption: no need to store any intermediate value 
(i.e., no growth at all with “depth”; O(1)). Only need to store 

Forward pass: black-box root solving 
(e.g., fast Quasi-Newton methods)

Backward pass: One-step multiplication 
with the inverse Jacobian at equilibrium

x, z?, ✓.

- Typically ~2-2.5x slower to train, ~1.5-2x slower for inference (root 
finding takes slightly longer than iterating a small fixed # of forward steps).



DEQs for Sequence Modeling
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- One can easily extend the methods above to create DEQ versions of all 
common sequence modeling architectures.

- We specifically provide two instantiations of DEQ based on two very different 
SOTA sequence modeling architectures:

1) DEQ-TrellisNet: equilibrium version of 
TrellisNet architecture [Bai et al., ICLR 2019], a 
type of weight-tied temporal convolutions 
that generalizes RNNs

2) DEQ-Transformer: equilibrium version 
of Transformer architecture [Vaswani et al., 
NIPS 2017], with weight-tied multi-head self-
attention [Dehghani et al., ICLR 2019]

. . .x1 x2 x3 xT

. . .y1 y2 y3 yT

. . .z⋆1 z⋆2 z⋆3 z⋆T

z?1:T = f✓(z
?
1:T ;x1:T )

= RootFind(g✓;x1:T )

More details in the paper.



Large-Scale Benchmarks
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Word-level Language Modeling on WikiText-103 (WT103)
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1) Benchmarked on sequence length 150  
2) Does not include memory for word embeddings

More results in the paper.



Summary, Thoughts and Challenges
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- DEQ represents the largest-scale practical application of implicit layers in deep 
learning of which we are aware.

- DEQ computes an “infinite-depth" network. DEQ’s forward pass relies on a 
direct root solving; its backward pass relies only on the equilibrium point, not 
on any of the intermediate “hidden features". Memory needed to train DEQ is 
therefore constant (i.e., equivalent to that of 1 layer).

- DEQ performs competitively with SOTA architectures, but with up to 90% 
reduction in memory cost.

- How should we understand depth in deep networks?

- Let the objective of a model be implicitly defined (e.g., “the equilibrium")?

Shaojie Bai shaojieb@cs.cmu.edu https://github.com/locuslab/deq @shaojieb

Interested in DEQ? Stop by our poster at  
Exhibition Hall B+C #137 (right after this talk) ;-)

mailto:shaojieb@cs.cmu.edu

