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Background: GQN, NP and Meta-Learning
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"What if the stochastic process also had some underlying
temporal dynamics?"
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Color Cube

Contextis shown in the first 5 time-steps and the remaining are predicted purely on the command of the
actions provided to the object. The actions can be translation (L, R, U, D) or rotations(Clockwise, A-Clockwise)
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Color Cube
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Comparing against GQON
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Color Shapes : Tracking and Updating

Contextis shown intermittentlyand we allow the predictionsto diverge from the true. On seeing the context,
we observe that the belief about the object is updated.
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Negative Log-Likelihood

Dataset Regime 7' GQN TGOQN
no PD PD
Color Shapes Predict 20 5348 489 564
Color Cube (Det.) Predict 10 380 221 226
Multi-Object (Det.) Predict 10 844 346 357
Color Shapes Track 20 5285 482 513
Color Cube (Jit.)  Track 20 783 153 156
Multi-Object (Jit.) Track 20 1777 450 475

Table 1: Negative log p(Y | X, C) estimated using
importance-sampling from posterior with K = 40.



RUTGERS

Do visit our poster

Today
10:45 AM - 12:45 PM

East Exhibition Hall B + C
Poster 132

Thank You

ETIRI



