Comparing distributions: ¢; geometry improves kernel

two-sample testing

M. Scetbon'?  G. Varoquaux!

Hnria, Université Paris-Saclay

2CREST, ENSAE

12 décembre 2019

1/11



o Two collections of samples X, Y from unknown distributions P and

® McDonald's
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o Two collections of samples X, Y from unknown distributions P and

® McDonald's
@ KFC

o Problem : Are the two set of observations X and Y drawn from the same
distribution ?
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Two-Sample Test
Test the null hypothesis Hy : P = () against H; : P #
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o2
e Gaussian Kernel : k,(z,y) = exp (‘ ||z20y||2

o Empirical Mean Embeddings of P and () :

fip(T) = 3" k(z;. T)
=1
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@ Aboslute difference of the Mean Embeddings :
S(T) = [1p(T) — /1o (T)]
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@ Aboslute difference of the Mean Embeddings :
S(T) = [1p(T) — /1o (T)]

e Test locations : (Tj)j:1 ~T

| pup — Ul
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Test Statistic ' with p > 1 :

J
-~ p p ~
(dzp,u,J(X, )) i=n2 Y _|fip(T;) — [iq(Tj)|”
=1

1. The case when p = 2 has been studied by [1, 2]
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Test Statistic ' with p > 1 :

M“

((/i\ép,,u,J(Xa > ng ’/LP Tj ’ P

Jj=1

These Statistics are derived from metrics which metrize the weak convergence :

pp(t) — 1o (t) ‘pdf(t)) 1/p

1. The case when p = 2 has been studied by [1, 2]
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Test Statistic ' with p > 1 :

J
(dgpaﬂyJ(Xv > n% Z ’;“P Tj ’p
7j=1

These Statistics are derived from metrics which metrize the weak convergence :

pp(t) — 1o (t) ‘pdl“(t)) 1/p

Theorem : Weak Convergence

o Do — drr y(an, ) =0

1. The case when p = 2 has been studied by [1, 2]
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Test of level a : Compute ((i\gp”u’J(X, ))p and reject Hy if

~ P
(dgp”uyj(X, )) > T, p =1 — « quantile of the asymptotic null distribution.

9/11



Test of level a : Compute ((igme(X, ))p and reject Hy if

~ P
(dgp”uyj(X, )) > T, p =1 — « quantile of the asymptotic null distribution.

Proposition : ¢; geometry improves power

Let § > 0. Under the alternative hypothesis H;, almost surely there exist N > 1
such that for all n > N with a probability 1 — ¢ :

~ 2 ~
<d€2,ﬂ,J(X7 )> > Ta,? = dﬂl,u,J(Xa ) > Toz,l
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Conclusion

e Under the alternative hypothesis, Analytic Kernel (e.g Gaussian Kernel)
guarantees dense differences between [ip and
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[ @ East Exhibition Hall B + C #6 ]

10/11



References 1

[1] K. P. Chwialkowski, A. Ramdas, D. Sejdinovic, and A. Gretton. Fast two-sample
testing with analytic representations of probability measures. In Advances in Neural
Information Processing Systems, pages 1981-1989, 2015.

[2] W. Jitkrittum, Z. Szabd, K. P. Chwialkowski, and A. Gretton. Interpretable
distribution features with maximum testing power. In Advances in Neural Information
Processing Systems, pages 181-189, 2016.

11/11



	Références

