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• Neural Tangent Kernel (NTK): recent attempt to explain success of deep learning
• Specific learning rate and initialization scale => gradient descent learns kernel 

method with features from random initialization
• NTK can’t explain generalization

• Unrealistic learning rate and initialization scale
• Neural nets outperform kernel methods in practice
• Doesn’t allow for ℓ" regularization!

Our work: what can we say about optimization/generalization with ℓ" regularizer?

[Du et. al’18, Li and Liang’18, Jacot et. al’18]
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Our work: distribution in 𝑑 dimensions with
NTK: 𝛀(𝒅𝟐) samples to learn ℓ𝟐-regularized logistic loss: 𝑶 𝒅 samples

First two coordinates: 
𝑦 = +1, 𝑥0, 𝑥" = ±1,0 w.p. ½
𝑦 = −1, 𝑥0, 𝑥" = 0,±1 w.p. ½

Remaining 𝑑 − 2 coordinates are noise

Takeaway: ℓ" regularization can adaptively choose important features, whereas NTK can’t
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Main Results II: global-minimizer of regularized logistic 
loss ≈max-margin neural net
• Training objective:

logistic loss + λ ⋅ ||parameters||"

• Holds regardless of depth, e.g. for any feedforward relu network
• [Golowich et. al’17] => generalization of global min bounded by inverse max-margin
• Max-margin non-decreasing with width => increasing network size improves bound

Our result: If network is homogeneous, global minimizer approaches max-margin 
solution as 𝜆 → 0



Main Results III: Optimization

• Previous slide: global min of regularized logistic loss => good statistical properties



Main Results III: Optimization

• Previous slide: global min of regularized logistic loss => good statistical properties

How do we obtain a global optimizer of the loss?



Main Results III: Optimization

• Previous slide: global min of regularized logistic loss => good statistical properties

• For infinite-width two-layer neural net, noisy gradient descent converges to global 
optimizer in polynomial iterations

How do we obtain a global optimizer of the loss?
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Come find our poster: 05:00 -- 07:00 PM @ East Exhibition Hall B + C #236!


