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Introduction to Graph Matching
Graph matching problem aims at finding the optimal correspondence between nodes.

Graph matching has many applications

• Image registration
• Pattern recognition
• Image segmentation
• Shape matching
• Object tracking
• Protein-protein

interaction network
alignment

Figure 1: Landmarks matching in computer vision
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Introduction to Graph Matching (Cont.)

Two quadratic assignment problems (QAPs) for graph matching
• The Koopmans-Beckmann’s QAP

max
X
〈KN ,X〉F + 〈A1X,XA2〉F

s.t. X ∈ P = {X ∈ {0, 1}n×n|X~1 = ~1,XT~1 = ~1}, (1)

where KN ∈ Rn×n is the node affinity matrix, A1 and A2 are the adjacency
matrices of two graphs, and 〈·, ·〉F is the Frobenius inner product.
• The Lawler’s QAP

max
X
〈KN ,X〉F + vec(X)TKvec(X) s.t. X ∈ P, (2)

where K is an n2 × n2 matrix storing the edge affinities, defined such that

Kia,jb =
{
kE(~q1

ij , ~q
2
ab), if i 6= j, a 6= b, e1

ij ∈ E1, and e2
ab ∈ E2

0 otherwise
. (3)
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Introduction to Graph Matching (Cont.)

Pros and cons of two QAPs
• The Koopmans-Beckmann’s QAP

I It has well-designed convex and concave relaxations and has relatively low
space complexity O(n2).

I However, it doesn’t consider the attribute information.

• The Lawler’s QAP
I It well encodes both the node and edge attributes.
I However, it is not natural to obtain convex and concave relaxations and has

extremely high space complexity O(n4) because of the affinity matrix K.

Limitations of the Lawler’s QAP
If we want to solve the Lawler’s graph matching problem with more than 1, 000
nodes, we need to pre-compute a huge matrix K of the size 1, 000, 000× 1, 000, 000.
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Our contributions

• We provide a unifying view for Koopman-Beckmann’s and Lawler’s QAPs, based
on a very mild assumption that edge affinities are characterized by kernels.

• We rewrite Lawler’s QAP as the Koopmann-Beckmann’s alignment between two
arrays in a reproducing kernel Hilbert space (RKHS), which allows us to solve it
without computing the huge affinity matrix.

• We develop new and natural convex and concave relaxations for Lawler’s QAP.

• We derive the efficient entropy-regularized Frank-Wolfe optimization algorithm
for solving QAP.

• We conduct extensive experiments to demonstrate the superior performance of
our kernelized graph matching algorithm. Notably, in practice, we can solve the
Lawler’s graph matching problem with thousands of nodes in about ten minutes.
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KerGM: Kernelized Graph Matching
We assume that the edge affinity function kE : RdE × RdE → R is a kernel. That is,
there exist both an RKHS, H, and an (implicit) feature map, ψ : RdE → H, such that

kE(~q1, ~q2) = 〈ψ(~q1), ψ(~q2)〉H, ∀~q1, ~q2 ∈ RdE . (4)

The Hilbert array representation of an attributed graph
For any graph G with edge attributes Q = [~qij |eij ∈ E ] , we can construct an array,
Ψ ∈ Hn×n:

Ψij =
{
ψ(~qij) ∈ H, if (vi, vj) ∈ E
0H ∈ H, otherwise

,where 0H is the zero vector in H. (5)
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KerGM: Kernelized Graph Matching (Cont.)

Multiplications between a Hilbert array, Ψ, and a matrix, X

• Ψ�X ∈ Hn×n, where

[Ψ�X]ij ,
n∑
k=1

XkjΨik ∈ H. (6)

• X �Ψ ∈ Hn×n, where

[X �Ψ]ij ,
n∑
k=1

XikΨkj ∈ H. (7)

Figure 2: Visualization of the operation Ψ � X.
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KerGM: Kernelized Graph Matching (Cont.)
Let Ψ(1) and Ψ(2) be the corresponding Hilbert arrays of graph G1 and graph G2,
respectively. Then the Lawler’s QAP can be written as

max Jgm(X) = 〈KN ,X〉F + 〈Ψ(1) �X,X �Ψ(2)〉FH

s.t. X ∈ P. (8)

Remark 1. Recall the Koopmans-Beckmann’s QAP is

max
X
〈KN ,X〉F + 〈A1X,XA2〉F

s.t. X ∈ P. (9)

Therefore the Lawler’s QAP (8) can be rewritten as the form of the
Koopmans-Beckmann’s QAP.
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Kernelized Graph Matching (Cont.)

Solving the Lawler’s QAP
• The convex relaxation:

min Jvex(X) = −〈KN ,X〉F + 1
2‖Ψ

(1)�X−X�Ψ(2)‖2
FH s.t. X ∈ D. (10)

• The concave relaxation:

min Jcav(X) = −〈KN ,X〉F−
1
2‖Ψ

(1)�X +X�Ψ(2)‖2
FH s.t. X ∈ D. (11)

• The path-following strategy:

min Jα(X) = (1− α)Jvex(X) + αJcav(X) s.t. X ∈ D. (12)

• The entropy-regularized Frank-Wolfe optimization:

min Jα(X) + λ

n∑
i,j=1

Xij log Xij s.t. X ∈ D. (13)
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Experimental results on synthetic graphs
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Figure 3: Compare the matching results of different agorithms on synthetic graph dataset.
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Experimental results on protein-protein interaction networks
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Figure 4: Results on PPI networks.
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