Differentiable Ranking and Sorting using Optimal Transport

M. Cuturi O. Teboul J.-P. Vert

google_research/soft_sort/

Ranking and Sorting numbers ...

Ranking and Sorting numbers ...

Ranking and Sorting numbers ...

... are **not** differentiable operations

When adding a small perturbation τ to x_4 ,

$$\mathbf{x} = (x_1, x_2, x_3, x_4 + \tau, x_5)$$

... are **not** differentiable operations

When adding a small perturbation τ to x_4 ,

$$\mathbf{x} = (x_1, x_2, x_3, x_4 + \tau, x_5)$$

R is unchanged, S varies only in one coordinate.

$$R\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \hline x_4 + \tau \\ x_5 \end{bmatrix}\right) = \begin{bmatrix} 4 \\ 3 \\ 1 \\ 2 \\ 5 \end{bmatrix} \qquad S\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \hline x_4 + \tau \\ x_5 \end{bmatrix}\right) = \begin{bmatrix} x_3 \\ \hline x_4 + \tau \\ x_2 \\ x_1 \\ x_5 \end{bmatrix}$$

Soft Ranks and Sort Operators

Problem: Despite appearing frequently in ML, R & S are staircase/broken lines like functions.

Soft Ranks and Sort Operators

Goal: approximation functions for *R/S*, **arbitrarily close** to the true *R/S* vector outputs, programatically differentiable everywhere.

Sketch: mined resources must be dispatched towards factories.

Sketch: mined resources must be dispatched towards factories.

Each of the *n* mines must dispatch its production

Sketch: mined resources must be dispatched towards factories.

Each of the *m* factories need resource as raw material

Optimal Transport computes the **least-costly** transfer plan (in terms of moving resources) in $O((n+m) nm \log(n+m))$

Suppose the mines and factories live in a 1D world.

Optimal Transport is solved using sorting:

Optimal Transport is solved using sorting:

"Repeat until termination: the leftmost mine that's left transfers as much as it can to leftmost factory still in need of resource." computation: $O(n \log n + m \log m)$

Ranking / Sorting

 $O(n \log n + m \log m)$

Optimal Transport

$$O((n+m) nm \log(n+m))$$

Ranking / Sorting

 $O(n \log n + m \log m)$

Optimal Transport

Ranking / Sorting

 $O(n \log n + m \log m)$

Optimal Transport

Ranking / Sorting

 $O(n \log n + m \log m)$

Regularized OT
Sinkhorn Algorithm
O(nm)

Ranking / Sorting $O(n \log n + m \log m)$

Regularized OT Sinkhorn Algorithm O(nm)

Ranking / Sorting

 $O(n \log n + m \log m)$

Regularized OT Sinkhorn Algorithm O(nm)

At the poster, you will see...

- Algorithm, parallelism and numerical tradeoffs
 - careful pre-processing is needed.
 - Sinkhorn needs some stabilization.
- Applications involving softrank and softsort
 - softrank: our soft 0/1 loss is competitive w.r.t. XE
 - softsort: soft least-quantile regression
- TF and JAX implementations available

https://github.com/google-research/google-research/tree/master/soft_sort

@ East Exhibition Hall B + C #60