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Overview

Goal: theoretically understand the generalization performance in
the presence of adversaries.

E(x,y)~p[$,rg]g>é ! (h(z"),y)]

Our method applies to
» General adversaries encompassing all [,-bounded adversaries.

» Multi-class problems and popular loss functions such as the
hinge loss and ramp loss.



Standard vs Adversarial Expected Risk



Standard vs Adversarial Expected Risk

Standard expected risk:

RP(h) = E(m,y)NP[l(h(x>a y)]



Standard vs Adversarial Expected Risk

Standard expected risk:

RP(h) = E(m,y)NP[l(h(x)a y)]
The adversarial expected risk:

RP(h7 B) = E(m,y)NP[w}?]%%(w)l(h(m/)a y)]v

where N(z) = {2’ : 2/ — x € B}.



Standard vs Adversarial Expected Risk

Standard expected risk:

RP(h) = E(m,y)NP[l(h(x>a y)]
The adversarial expected risk:

Rp(h,B) = E(zy)~p [w,rg%)l (h(="), )],

where N(z) = {2’ : 2/ — x € B}.

The relationship between the two notions of expected risk?
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Proposed Methodology

Challenge: The inner maximization problem is usually very
hard to solve directly.
Trick: (1) Introduce a transport map 7}, : Z — Z such that

Rp(h,B) = Rp/(h)

(2) Prove that all these distributions P’ locate within a
Wasserstein ball centered at P

Wp(P, Pl) < e€R
(3) The adversarial expected risk is upper bounded as

Rp(h,B) < Rey1(P,h), VheM
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Corollary

|

» Support Vector Machines
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» Neural Networks
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