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Motivation: Why do Neural Nets generalize?

* Optimization algorithm matters:
Not sufficient to “minimize train loss” arbitrarily [Zhang et al. 2017]

* Informal conjecture: SGD outputs “low complexity” classifiers

This work: Formalizing this conjecture




Main Claims (informal)

Claim 1: SGD starts by learning an “essentially linear” classifier

Claim 2: In later stages, SGD learns models of increasing complexity.

Increasing # epochs >



Performance Correlation

“How well performance of complex model /
is explained by a simple model” \




Performance Correlation

Input distribution: x ~ D

Joint distribution { Y (x), F(x), L(x) },-p
f t t

True label NN output Linear model

(1) I(F;Y) . Accuracy of Neural Network
(2) I(F;Y|L) : “Unexplained accuracy”
( How much more F reveals about Y, after knowing L)
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Input distribution: x ~ D

Joint distribution { Y (x), F(x), L(x) },-p
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True label NN output Linear model

(1) I(F;Y) . Accuracy of Neural Network
(2) I(F;Y|L) : “Unexplained accuracy”
( How much more F reveals about Y, after knowing L)

Defn: Performance Correlation
uy(F; L) =1(F;Y)—I(F;Y | L)
Accuracy of F explained by the linear classifier L.




Performance Correlation: Properties

1. Depends only on predictions of F on distribution D

F: Linear everywhere F: Linear on distribution

2. Ilgnore component of F that is nonlinear, but not useful to predict Y
Eg: F = L + noise is still fully explained by L



Experiments: Linear Learning

CIFAR10, Animals vs Objects
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1.

Linear learning phase:

- NN explained by linear model

- Lasts until NN matches the best
linear model
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1.

Linear learning phase:

- NN explained by linear model

- Lasts until NN matches the best
linear model

Nonlinear learning phase:
- NN becomes nonlinear
- Retains linear component

Holds for variety of real & synthetic tasks
(CIFAR, MNIST, MLPs, CNNs).



Experiments: Increasing Complexity

Generalized Hypothesis (informal):

SGD learns functions of increasing complexity

CIFARI10, First Five vs Last Five
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Conclusion

Our Work:
1. Introduce performance correlation
2. SGD initially learns an essentially linear function, then more complex ones

Future Work:

* Better understanding of why NNs generalize,
by studying implicit bias of SGD throughout training

Thanks!
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