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★A general-purpose similarity metric between tasks is nontrivial for 

complex models such as neural networks!
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Motivation

★This is an instance of task-agnostic continual learning.

Meta-learning algorithms can be brittle to changes in the task 

distribution, especially without access to previous training data.

➔ Nonstationarity: How can we both detect and adapt to an evolving 

distribution over tasks in order to learn to learn without forgetting?
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➔ Estimation of latent task-specific parameters φj is performed by gradient-

based expectation-maximization.

★The result is a scalable and architecture-agnostic algorithm that that 

jointly estimates task-specific cluster assignments and model parameters. 
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Algorithm
We compute L sets 
of fast weights via 
gradient-based 
adaptation from 
each global 
parameter θ(ℓ).



Algorithm

Based on the 
training losses for 
each set of weights, 
we estimate the 
task-to-cluster 
assignment 
probabilities.



Algorithm

Finally, we update 
the global 
parameters θ(ℓ) with 
a weighted 
combination of 
gradient updates.
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EM Subroutines
Computes soft task-to-cluster 

assignments 𝛄 based on a 

conditional mode estimate of 
the task-specific parameter φj.  

★ Note the CRP prior penalties 
(log n(ℓ) and log ζ).

Updates global parameters θ(ℓ) 
by gradient descent on the task-
specific validation loss.  

★ This is a weighted version of 
the MAML [Finn 2017] outer 
loop update. 



✓ Heterogeneity: Task relatedness can be inferred from the likelihood 
of assigning each task to a hyperparameter set based on the 
likelihood after a few steps of gradient-based adaptation to data 
from a specific task. 

✓ Non-stationarity: The nonparametric mixture allows for adaptive 
capacity and change detection, thus alleviating catastrophic 
forgetting even in the task-agnostic setting (no task boundaries).



Cluster assignments on stylized miniImageNet 

Above: An evolving dataset of stylized miniImageNet few-shot classification tasks using a sequence 
of filters; each panel gives task-specific per-cluster responsibilities over time. 
Unique cluster (color) has high responsibility for each different type of task (row).



Accuracy on stylized miniImageNet



★Task-specific latent structure regulates transfer in a heterogeneous (highly 
varied) and potentially non-stationary (evolving) distribution of tasks, 
without explicitly modeling task relatedness (e.g., geometrically). 

★We scale Bayesian nonparametrics to the full set of NN weights with a 
stochastic point-estimation algorithm in order to detect distribution shift 
and adapt model capacity. 

★We report improved accuracy on the static miniImageNet dataset. 

★We report improved performance on a catastrophic forgetting evaluation 
(i.e., accuracy on prior tasks is preserved while learning new tasks).

Summary
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