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% A general-purpose similarity metric between tasks is nontrivial for

complex models such as neural networks!
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Meta-learning algorithms can be brittle to changes in the task

distribution, especially without access to previous training data.

-> : How can we both and to an evolving

distribution over tasks in order to learn to learn ?

% This is an instance of task-agnostic continual learning.
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- Estimation of latent task-specific parameters ¢, is performed by gradient-

based expectation-maximization.
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- Estimation of latent task-specific parameters ¢, is performed by gradient-
based expectation-maximization.

% The result is a scalable and architecture-agnostic algorithm that that

jointly estimates task-specific cluster assignments and model parameters.
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each global
parameter 616,
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Based on the
training losses for
each set of weights,
we estimate the
task-to-cluster
assignment
probabilities.



Draw tasks 71,...,7T; ~ pga(T)
forjinl,...,J do
Draw task-specific datapoints, x; ...x; ~ DT, (x)

Draw a parameter initialization for a new cluster from the global prior, o=ty ~ G
for {in{l,...,L, L+ 1} do

2 (0) (£) :
Initialize 4) 0 O () Finally, we update
Compute task specific mode estimate, ¢’ <~ ¢, +a ), qu logp(@;,, | ¢;7) the global
2(1:L)
Compute assignment of tasks to cluste(res) o7 <—(£3E STEP (x;. ., ®; ) " . narameters 8@ with
Update each component £ in 1, . 60"’ < 6"’+ M-STEP ({ZL‘JN+1 N @5 Vi i=1) a weighted

combination of
gradient updates.
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Computes soft task-to-cluster
assignments y based on a

conditional mode estimate of
the task-specific parameter ¢;.

% Note the CRP prior penalties
(log n® and log Q).

Updates global parameters 6
by gradient descent on the task-
specific validation loss.

% This is a weighted version of
the MAML [Finn 2017] outer
loop update.



: Task relatedness can be inferred from the likelihood
of assigning each task to a hyperparameter set based on the
likelihood after a few steps of gradient-based adaptation to data

from a specific task.

: The nonparametric mixture allows for adaptive

capacity and change detection, thus alleviating catastrophic
forgetting even in the task-agnostic setting (no task boundaries).
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Above: An evolving dataset of stylized minilmageNet few-shot classification tasks using a sequence

of filters; each panel gives task-specific per-cluster responsibilities over time.
Unique cluster (color) has high responsibility for each different type of task (row).



Accuracy on stylized minilmageNet
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Figure 8: Results on the evolving dataset of filtered minilmageNet few-shot classification tasks (higher is better).
Each panel (row) presents, for a specific task type (filter), the average meta-test set accuracy over cumulative
number of few-shot episodes. We additionally report the degree of loss in backward transfer (catastrophic
forgetting, CF) in the legend. This is calculated for each method as the average drop in accuracy on the first two
tasks at the end of training (lower is better; U.B.: upper bound).



% Task-specific latent structure regulates transfer in a heterogeneous (highly
varied) and potentially non-stationary (evolving) distribution of tasks,
without explicitly modeling task relatedness (e.g., geometrically).

% We scale Bayesian nonparametrics to the full set of NN weights with a
stochastic point-estimation algorithm in order to detect distribution shift
and adapt model capacity.

% We report improved accuracy on the static minilmageNet dataset.

% We report improved performance on a catastrophic forgetting evaluation
(i.e., accuracy on prior tasks is preserved while learning new tasks).
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