PIDForest: Anomaly Detection via Partial Identification

Vatsal Sharan

Stanford

Udi Wieder

VMware Research

Problem: Given an *unlabeled* dataset, find points that deviate from normal.

 Ubiquitous problem in unsupervised learning with several applications.

Problem: Given an *unlabeled* dataset, find points that deviate from normal.

- Ubiquitous problem in unsupervised learning with several applications.
- DNNs very effective for text, image, video.
- Our focus: tabular data, time-series.

Problem: Given an *unlabeled* dataset, find points that deviate from normal.

 Motivating setting: Get parameters regarding health of data center every second, want to detect unusual behavior.

Time- stamp	CPU usage	Memory	Band- width	OS	
1	30%	10GB	10Gbps	Linux	
2	35%	11GB	8Gbps	Mac	
3	35%	15GB	8Gbps	Windows	

Problem: Given an *unlabeled* dataset, find points that deviate from normal.

 Motivating setting: Get parameters regarding health of data center every second, want to detect unusual behavior.

Challenges:

- ☐ High-dimensional, irrelevant attributes
- Heterogeneous attributes
- Interpretability

Time- stamp	CPU usage	Memory	Band- width	OS	
1	30%	10GB	10Gbps	Linux	
2	35%	11GB	8Gbps	Mac	
3	35%	15GB	8Gbps	Windows	

The ID game:

The ID game:

1. Alice and Bob share a table of all living animals.

No	Species	Color	Weight	Age	
1	Panther	Black	95	53	
2	Adder	Black	30	36	
3	Hornet	Green	2	83	
4	Spider	Scarlet	1	2	
5					

The ID game:

- 1. Alice and Bob share a table of all living animals.
- 2. Row number, followed by attribute information.

No	Species	Color	Weight	Age	
1	Panther	Black	95	53	
2	Adder	Black	30	36	
3	Hornet	Green	2	83	
4	Spider	Scarlet	1	2	
5					

The ID game:

- 1. Alice and Bob share a table of all living animals.
- 2. Row number, followed by attribute information.
- Alice wants to tell Bob what she sees.

No	Species	Color	Weight	Age	
1	Panther	Black	95	53	
2	Adder	Black	30	36	
3	Hornet	Green	2	83	
4	Spider	Scarlet	1	2	
5					

The ID game:

- Alice and Bob share a table of all living animals.
- 2. Row number, followed by attribute information.
- Alice wants to tell Bob what she sees.

Goal: Minimize message length

No	Species	Color	Weight	Age	
1	Panther	Black	95	53	
2	Adder	Black	30	36	
3	Hornet	Green	2	83	
4	Spider	Scarlet	1	2	
5					

The ID game:

- 1. Alice and Bob share a table of all living animals.
- 2. Row number, followed by attribute information.
- Alice wants to tell Bob what she sees.

Goal: Minimize message length

The ID game:

- 1. Alice and Bob share a table of all living animals.
- 2. Row number, followed by attribute information.
- 3. Alice wants to tell Bob what she sees.

Goal: Minimize message length

Alice: color = white, species = elephant

The ID game:

- Alice and Bob share a table of all living animals.
- 2. Row number, followed by attribute information.
- Alice wants to tell Bob what she sees.

Goal: Minimize message length

Alice: color = white, species = elephant Returns a list of 50.

The ID game:

- 1. Alice and Bob share a table of all living animals.
- 2. Row number, followed by attribute information.
- Alice wants to tell Bob what she sees.

Goal: Minimize message length

Alice: color = white, species = elephant

Returns a list of 50.

Alice: index = 30.

The ID game:

- 1. Alice and Bob share a table of all living animals.
- 2. Row number, followed by attribute information.
- Alice wants to tell Bob what she sees.

Goal: Minimize message length

The ID game:

- 1. Alice and Bob share a table of all living animals.
- 2. Row number, followed by attribute information.
- Alice wants to tell Bob what she sees.

Goal: Minimize message length

Alice: color = white, species = rabbit

The ID game:

- 1. Alice and Bob share a table of all living animals.
- 2. Row number, followed by attribute information.
- 3. Alice wants to tell Bob what she sees.

Goal: Minimize message length

Alice: color = white, species = rabbit Returns a list of 1000000000.

The ID game:

- 1. Alice and Bob share a table of all living animals.
- 2. Row number, followed by attribute information.
- 3. Alice wants to tell Bob what she sees.

Goal: Minimize message length

Alice: color = white, species = rabbit Returns a list of 1000000000.

Alice: weight = 5-6 lbs, age = 2-3 years, ...

The ID game:

- 1. Alice and Bob share a table of all living animals.
- 2. Row number, followed by attribute information.
- Alice wants to tell Bob what she sees.

Goal: Minimize message length

Takeaway: Anomalies are easy to partially identify.

Idea: Anomalies are points lying in relatively sparse regions of space.

Idea: Anomalies are points lying in relatively sparse regions of space.

Idea: Anomalies are points lying in relatively sparse regions of space.

PIDScore: Look for sparse subcubes containing the point

$$C = \frac{Vol(C)}{\#data\ points\ in\ C}$$

For any x, PIDScore(x) is maximum sparsity over all subcubes containing x.

$$C = \frac{Vol(C)}{\#data\ points\ in\ C}$$

For any x, PIDScore(x) is maximum sparsity over all subcubes containing x.

$$C = \frac{Vol(C)}{\#data\ points\ in\ C}$$

For any x, PIDScore(x) is maximum sparsity over all subcubes containing x.

$$C = \frac{\text{vol(c)}}{\text{#data points in } C}$$

For any x, PIDScore(x) is maximum sparsity over all subcubes containing x.

Sparsity of a subcube

 $C = \frac{\text{vor}(C)}{\text{\#data points in } C}$

For any x, PIDScore(x) is maximum sparsity over all subcubes containing x.

$$C = \frac{vol(C)}{\#data\ points\ in\ C}$$

log(PIDScore(x)) = cost of Partial Identification

$$C = \frac{\text{vol(C)}}{\text{#data points in C}}$$

Data set	PIDForest	iForest	RRCF	LOF	SVM	kNN	PCA
Thyroid	0.876 ± 0.013	0.819 ± 0.013	0.739 ± 0.004	0.737	0.547	0.751	0.673
Mammo.	0.840 ± 0.010	0.862 ± 0.008	0.830 ± 0.002	0.720	0.872	0.839	0.886
Siesmic	0.733 ± 0.006	0.698 ± 0.004	0.701 ± 0.004	0.553	0.601	0.740	0.682
Satimage	0.987 ± 0.001	$\textbf{0.994} \pm \textbf{0.001}$	$\textbf{0.991} \pm \textbf{0.002}$	0.540	0.421	0.936	0.977
Vowels	0.741 ± 0.008	0.736 ± 0.026	0.813 ± 0.007	0.943	0.778	0.975	0.606
Musk	1.000 ± 0.000	$\textbf{0.998} \pm \textbf{0.003}$	0.998 ± 0.000	0.416	0.573	0.373	1.000
http	0.986 ± 0.004	$\textbf{1.000} \pm \textbf{0.000}$	0.993 ± 0.000	0.353	0.994	0.231	0.996
smtp	0.923 ± 0.003	0.908 ± 0.003	0.886 ± 0.017	0.905	0.841	0.895	0.823
NYC	0.564 ± 0.004	0.550 ± 0.005	0.543 ± 0.004	0.671	0.500	0.697	0.511
A.T.	0.810 ± 0.005	0.780 ± 0.006	0.695 ± 0.004	0.563	0.670	0.634	0.792
CPU	0.935 ± 0.003	0.917 ± 0.002	0.785 ± 0.002	0.560	0.794	0.724	0.858
M.T.	0.813 ± 0.006	0.828 ± 0.002	0.7524 ± 0.003	0.501	0.796	0.759	0.834

Robust to noise.
Robust to irrelevant attributes.
Robust to choice of hyperparameters.

https://github.com/vatsalsharan/pidforest

Table 1: Results on real-world datasets. We bold the algorithm(s) which get the best AUC.

Summary

Partial Identification: Rigorous framework for anomaly detection, with minimal assumptions.

PIDScore: Definition of anomaly score based on Partial Identification.

PIDForest: Random forest-based anomaly detection.

- Outperforms commonly used anomaly detection algorithms.
- Code available to try out: https://github.com/vatsalsharan/pidforest

Poster #60, now!! -- 12:45 PM

pgopalan@vmware.com, vsharan@stanford.edu, uwieder@vmware.com