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Combining tasks
in one-step
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Our results: PCP (PCR)

A - n-by-d data matrix;
V™ - interested top-eigenspace;
P, - projection onto V™.

PCP: project a given vector onto V7,

PCP(PCR) solver runtime:

(unaccelerated)

O

(accelerated)

nnz

O

1117

= compute P\v

+&/nnz - d - SI'(AD”}/_)

A - eigenvalue threshold;
7y - eigengap;
k - number of top eigenvalues;
nnz - number of nonzeros;
k= A/ s(A) 2 (AR A

Low-order for

large n
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x2 -+ C9;
2+ Coi1

desired Zolotarev rational: 7 (z) = Cx H
[Zolotarev 1877] i€ [k]

~~ sign(x)



TeChﬂique #1 RaUOﬂal AppFOleaUOﬂ “Stronger linear algebraic

primitives solve problem in
fewer steps”

L  Same degree in comparison with standard polynomials [FMMS16], [AL17]

—polynomial

—polynomial —polynomial P
1 f|-==chebyshev rr 1 f|==chebyshev s 1 |==~chebyshev v- o
—--rational ' —--rational —--rational i
0f 0f 0r
-1 -1 - -1 prrtar ittt
1 0.5 0 0.5 1 1 0.5 0 0.5 1 1 -0.5 0 0.5 1
(a) v=0.1 (b) v=0.05 (c) v=0.01

Figure 1: same degree = 21, different -y



TeChﬂique #1 Rat|0ﬂa| ApprOX|mat|Oﬂ “Stronger linear algebraic

primitives solve problem in
fewer steps”

L  Compared with standard polynomials [FMMS16], [AL17]

—polynomial —polynomial —polynomial 5
1 f|-==chebyshev rr 1 f|==chebyshev s 1 |==~chebyshev HaYey o
—--rational ' —--rational i —--rational i

(a) v=0.1 (b) v=0.05 (c) v=0.01

Figure 1: same degree = 21, different -y

Better Approximation Quality under same degree
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TeChﬂique #2 Asymmetrlc S\/RG SOl\/er “Variance reduction for

non-convex problems”

L Solving squared system (M2 + ,u2])13 =

Y
: . 1
Solving asymmetric system L =M Y
%M I v/ )"
Our method for SVRG (variance-reduced ~

O(nnz +d - sr(A) - 1/u?)

solving asymmetric stochastic gradient descent)

Savings:
Dimensional-related factor in runtime compared with solving squared systems directly
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PCP: project a given vector onto V*,

Results: main ideas D compute Puo

1. Rational function approx.
reduce to solve O(1)
linear systems in form

(ATA - AD? + el)z = v Overall complexity

(unaccelerated):
2

O(nnz + d - sr(A) - %)

2. Asymmetric SVRG applied
to nonconvex problem —_—

Runtime: O(unz + d-sr(A)A"2y~2)
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Il. for sign and square-root matrix function approximation
lll. for nearly-linear time PCP and PCR solver



Thank you!

Yujia Jin Aaron Sidford

* Welcome to our poster @ 10:45am — 11:45am, Wednesday (12/11)
Questions? @ East Exhibition Hall B + C #162

e arxiv: 1910.06517

e Email: yujiajin@stanford.edu



