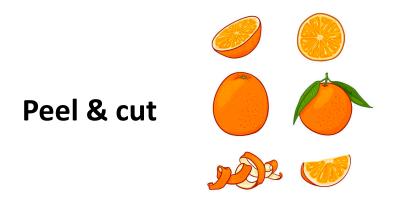
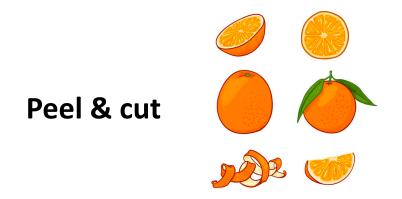
Principal Component Projection and Regression in Nearly Linear Time through Asymmetric SVRG

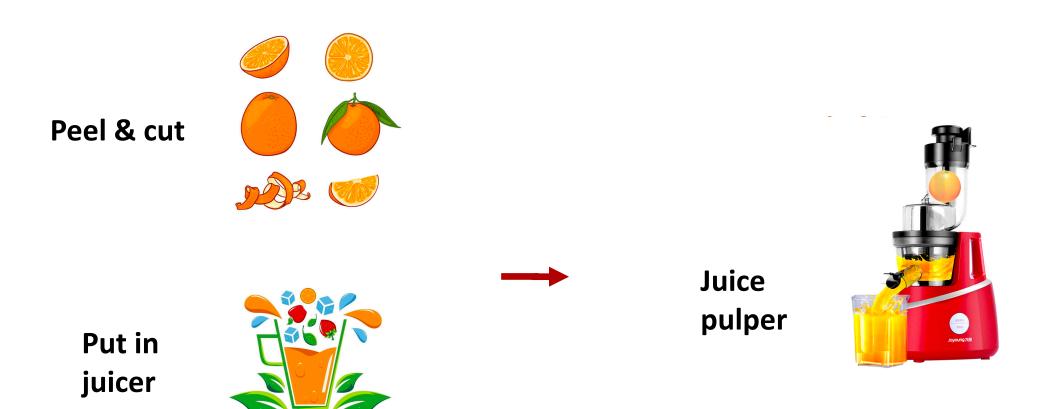
Yujia Jin, Aaron Sidford

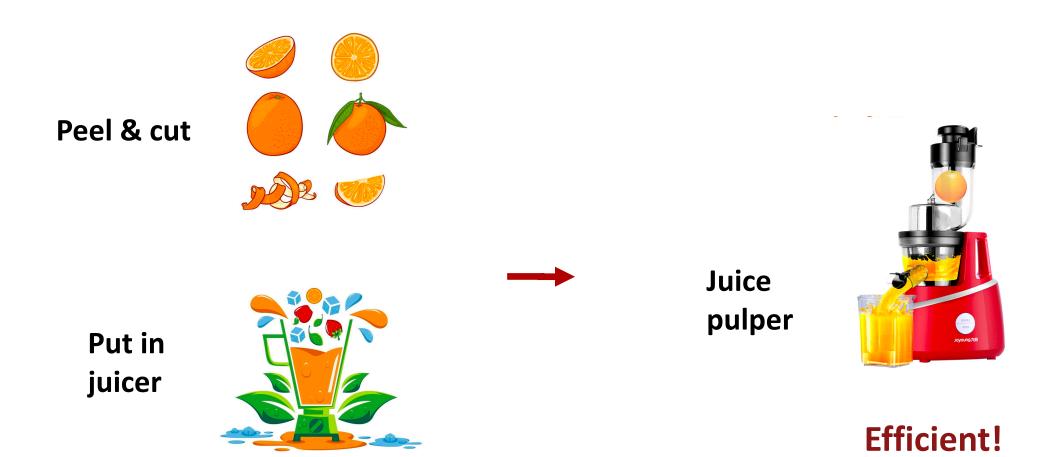
Stanford University

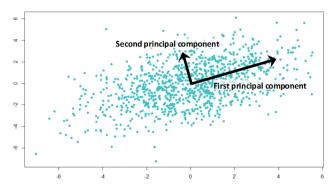




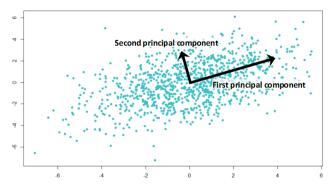
Put in juicer



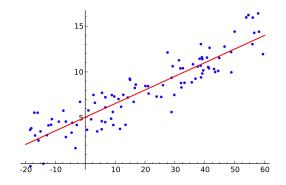




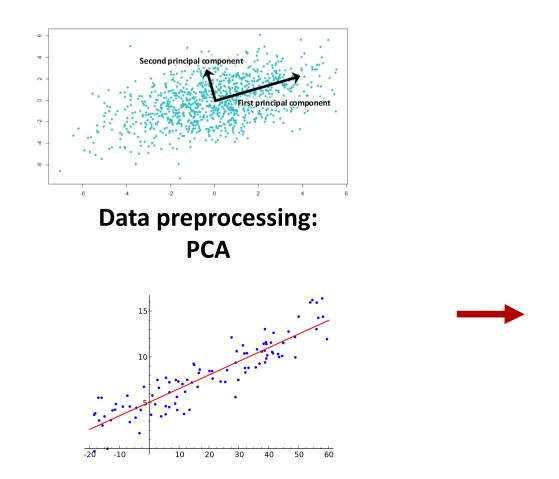
Data preprocessing: PCA



Data preprocessing: PCA

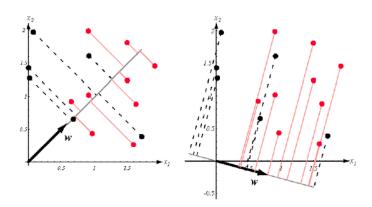


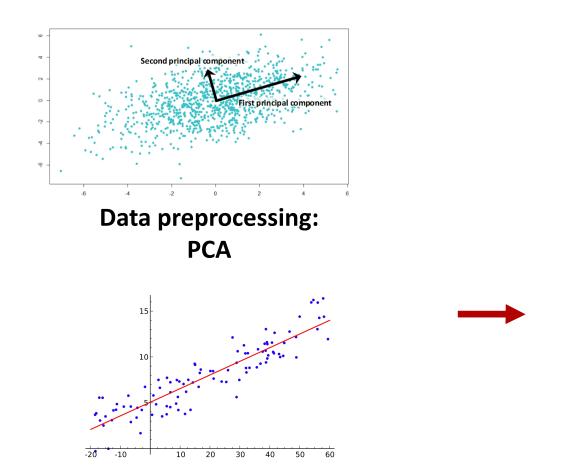
Data analysis tasks: Projection, regression, etc.



Data analysis tasks: Projection, regression, etc.

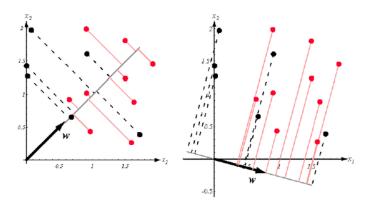
Principal Component Projection & Regression





Data analysis tasks: Projection, regression, etc.

Principal Component Projection & Regression



Combining tasks in one-step

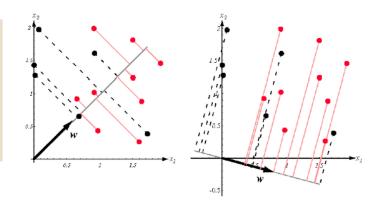
```
A - n-by-d data matrix; \mathcal{V}^{\star} - interested top-eigenspace; P_{\lambda} - projection onto \mathcal{V}^{\star}.
```

A - n-by-d data matrix; \mathcal{V}^{\star} - interested top-eigenspace;

 P_{λ} - projection onto \mathcal{V}^{\star} .

PCP: project a given vector onto \mathcal{V}^{\star} , = compute $P_{\lambda}v$

PCR: do regression restricted on \mathcal{V}^* , = solve $\min_{x \in \mathbb{R}^d} \|AP_{\lambda}x - b\|$ given b



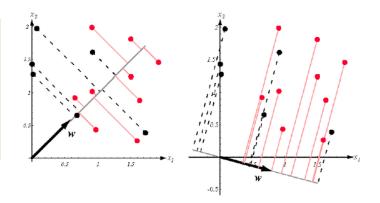
A - n-by-d data matrix;

 \mathcal{V}^{\star} - interested top-eigenspace;

 P_{λ} - projection onto \mathcal{V}^{\star} .

PCP: project a given vector onto \mathcal{V}^{\star} , = compute $P_{\lambda}v$

PCR: do regression restricted on \mathcal{V}^* , = solve $\min_{x \in \mathbb{R}^d} ||AP_{\lambda}x - b||$ given b



PCR
$$\xrightarrow{\tilde{O}(1)}$$
 poly. red. PCP [FMMS '16]

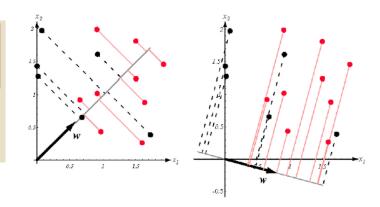
 $A\,$ - n-by-d data matrix;

 \mathcal{V}^{\star} - interested top-eigenspace;

 P_{λ} - projection onto \mathcal{V}^{\star} .

```
PCP: project a given vector onto \mathcal{V}^{\star}, = compute P_{\lambda}v
```

PCR: do regression restricted on \mathcal{V}^* , = solve $\min_{x \in \mathbb{R}^d} ||AP_{\lambda}x - b||$ given b



PCR
$$\stackrel{\tilde{O}(1) \text{ poly. red.}}{\longrightarrow}$$
 PCP [FMMS '16]

Results: State of the Art

linear in k

Classic method:

through computing top-k eigenvectors explicitly

$$\tilde{O}(k \cdot \text{nnz} + ...)$$

e.g. power method

PCP: project a given vector onto \mathcal{V}^{\star} , = compute $P_{\lambda}v$

 λ - eigenvalue threshold; γ - eigengap; k - number of top eigenvalues; nnz - number of nonzeros;

Results: State of the Art

PCP: project a given vector onto \mathcal{V}^{\star} , = compute $P_{\lambda}v$

linear in k

Classic method: through computing top-k eigenvectors explicitly

$$\tilde{O}(k \cdot \text{nnz} + ...)$$

e.g. power method

linear in γ^{-1}

Recent method:

through polynomial approximation of sign(x)

$$\tilde{O}(\gamma^{-1} \text{nnz} + ...)$$

[AL'17, MMS'18]

 λ - eigenvalue threshold; γ - eigengap; k - number of top eigenvalues; nnz - number of nonzeros;

Results: State of the Art

PCP: project a given vector onto \mathcal{V}^{\star} , = compute $P_{\lambda}v$

linear in k

Classic method: through computing top-k eigenvectors explicitly

$$\tilde{O}(k \cdot \text{nnz} + ...)$$

e.g. power method

linear in γ^{-1}

Recent method:

through polynomial approximation of sign(x)

$$\tilde{O}(\gamma^{-1} \text{nnz} + ...)$$

[AL'17, MMS'18]

nearly-linear!

Our method:

through rational approximation of sign(x)

$$\tilde{O}(\text{nnz} + ...)$$

 λ - eigenvalue threshold; γ - eigengap; k - number of top eigenvalues; nnz - number of nonzeros;

Our results: PCP (PCR)

 $oldsymbol{A}$ - n-by-d data matrix;

 \mathcal{V}^{\star} - interested top-eigenspace;

 P_{λ} - projection onto \mathcal{V}^{\star} .

PCP: project a given vector onto \mathcal{V}^{\star} , = compute $P_{\lambda}v$

PCP(PCR) solver runtime:

(unaccelerated)

$$\tilde{O}(\text{nnz} + d \cdot \text{sr}(A) \cdot \kappa^2 \gamma^{-2})$$

(accelerated)

$$\tilde{O}(\text{nnz} + d \cdot \text{sr}(21) \cdot \kappa^{\gamma})$$

$$\tilde{O}(\text{nnz} + \sqrt{\text{nnz} \cdot d \cdot \text{sr}(A)} \cdot \kappa^{\gamma-1})$$

 λ - eigenvalue threshold; γ - eigengap; k - number of top eigenvalues; nnz - number of nonzeros; $\kappa \stackrel{\Delta}{=} \lambda_1/\lambda; \ \mathrm{sr}(A) \stackrel{\Delta}{=} \|A\|_{\mathrm{F}}^2/\lambda_1.$

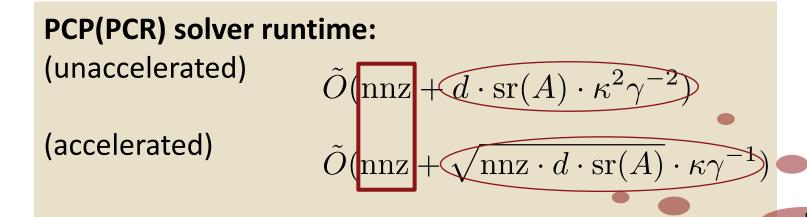
Our results: PCP (PCR)

A - n-by-d data matrix;

 \mathcal{V}^{\star} - interested top-eigenspace;

 P_{λ} - projection onto \mathcal{V}^{\star} .

PCP: project a given vector onto \mathcal{V}^{\star} , = compute $P_{\lambda}v$



 λ - eigenvalue threshold; γ - eigengap; k - number of top eigenvalues; nnz - number of nonzeros; $\kappa \stackrel{\Delta}{=} \lambda_1/\lambda; \ \mathrm{sr}(A) \stackrel{\Delta}{=} \|A\|_{\mathrm{F}}^2/\lambda_1.$

Low-order for large n

"Stronger linear algebraic primitives solve problem in fewer steps"

"Stronger linear algebraic primitives solve problem in fewer steps"

Reduce problem to find function $r(x) \approx_{\epsilon} \operatorname{sign}(x)$ and apply $\frac{1}{2} \left[r \left(A^{\top} A - \lambda I \right) v + v \right]$

"Stronger linear algebraic primitives solve problem in fewer steps"

Reduce problem to find function $r(x) \approx_{\epsilon} \operatorname{sign}(x)$ and apply $\frac{1}{2} \left[r \left(A^{\top} A - \lambda I \right) v + v \right]$

desired Zolotarev rational:
$$r_k^{\lambda\gamma}(x)=Cx\prod_{i\in[k]}\frac{x^2+c_{2i}}{x^2+c_{2i-1}}~\approx {\rm sign}(x)$$
 [Zolotarev 1877]

"Stronger linear algebraic primitives solve problem in fewer steps"

Same degree in comparison with standard polynomials [FMMS16], [AL17]

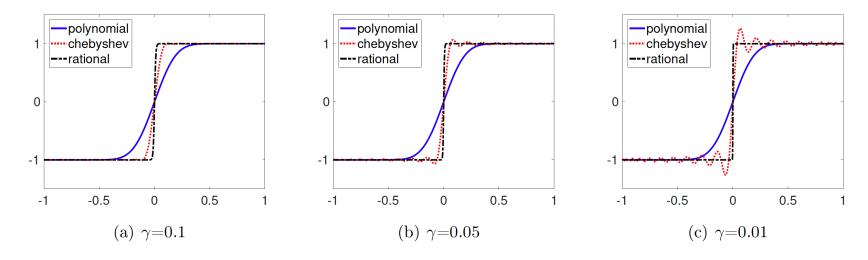


Figure 1: same degree = 21, different γ

"Stronger linear algebraic primitives solve problem in fewer steps"

Compared with standard polynomials [FMMS16], [AL17]

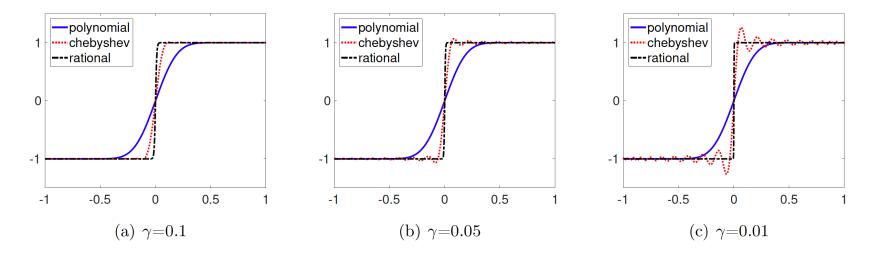


Figure 1: same degree = 21, different γ

Better Approximation Quality under same degree

"Variance reduction for non-convex problems"

"Variance reduction for non-convex problems"

Solving squared system
$$(M^2 + \mu^2 I) x = v$$

"Variance reduction for non-convex problems"

Solving squared system
$$(M^2 + \mu^2 I) x = v$$

Solving asymmetric system

"Variance reduction for non-convex problems"

Solving squared system
$$(M^2 + \mu^2 I) x = v$$

Solving asymmetric system

"Variance reduction for non-convex problems"

Solving squared system
$$(M^2 + \mu^2 I) x = v$$

Solving asymmetric system

Our method for solving asymmetric SVRG (variance-reduced stochastic gradient descent)

$$\widetilde{O}(\text{nnz} + d \cdot \text{sr}(A) \cdot 1/\mu^2)$$

Savings:

Dimensional-related factor in runtime compared with solving squared systems directly

Results: main ideas

1. Rational function approx. reduce to solve $\tilde{O}(1)$ linear systems in form $((A^{\top}A - \lambda I)^2 + cI)x = v$

2. Asymmetric SVRG applied to nonconvex problem

Runtime: $\tilde{O}(\text{nnz} + d \cdot \text{sr}(A)\lambda^{-2}\gamma^{-2})$

PCP: project a given vector onto \mathcal{V}^{\star} , = compute $P_{\lambda}v$

Results: main ideas

PCP: project a given vector onto \mathcal{V}^{\star} , = compute $P_{\lambda}v$

1. Rational function approx. reduce to solve $\tilde{O}(1)$ linear systems in form $((A^{\top}A - \lambda I)^2 + cI)x = v$

2. Asymmetric SVRG applied to nonconvex problem

Runtime: $\tilde{O}(\text{nnz} + d \cdot \text{sr}(A)\lambda^{-2}\gamma^{-2})$

Overall complexity (unaccelerated):

$$\tilde{O}(\text{nnz} + d \cdot \text{sr}(A) \cdot \frac{\kappa^2}{\gamma^2})$$

• Idea:

I. rational function allows lower degree approximation

• Solver:

- Idea:
 - I. rational function allows lower degree approximation
 - II. better variance reduction by extending the problem to larger dimension space
- Solver:

• Idea:

- I. rational function allows lower degree approximation
- II. better variance reduction by extending the problem to larger dimension space

• Solver:

I. for structured squared / asymmetric / non-PSD systems

• Idea:

- I. rational function allows lower degree approximation
- II. better variance reduction by extending the problem to larger dimension space

Solver:

- for structured squared / asymmetric / non-PSD systems
- II. for sign and square-root matrix function approximation

• Idea:

- I. rational function allows lower degree approximation
- II. better variance reduction by extending the problem to larger dimension space

Solver:

- for structured squared / asymmetric / non-PSD systems
- II. for sign and square-root matrix function approximation
- III. for nearly-linear time PCP and PCR solver

Thank you!

Yujia Jin

Aaron Sidford

Questions?

- Welcome to our poster @ 10:45am 11:45am, Wednesday (12/11)
 @ East Exhibition Hall B + C #162
- arxiv: 1910.06517
- Email: yujiajin@stanford.edu