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Information-theoretic idea for efficient modularity regularization

Unconstrained latent factor model Modular latent factor model
|} (for any distribution) 1} (for Gaussians)
TOCX | Z2) +TC(Z) =0 TC(X | 2)+TC(Z)=0, &Vi,TC(Z | X;) =0

(Related to VAE/ELBO: arXiv:1802.05822)

Suppose that variables approximately cluster into modules, one latent factor per module:
- Combinatorial search for the best structured model would be infeasible: exponentially many

« We re-formulate the learning problem as an unconstrained optimization whose global
optima correspond to structured latent factor models



Modular structure recovery in high-d (with 300 samples)
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Covariance estimation

- If n (samples) < p (variables), empirical covariance is a terrible, terrible estimate
- But we can do better through priors: sparsity, independence, dim. red., modularity

True covariance Empirical covariance
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# wins on 51 real datasets from OpenML
(best log-likelihood on test)

This work 32/51
Ledoit-Wolf 18/51
Sparse PCA 1/51
Factor Analysis 1/51

GLASSO (BigQUIC) 9/51



Estimating covariance from under-sampled stock market data
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| Block structure in
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Example latent factors appearing
in stock market data
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Conclusion Structure/
ome e : covariance
Neuroscience e e Gene Expression recovery 1

* Introduced an information-theoretic optimization to tractably discover
structured latent factor models

* Theoretical bounds on sample complexity suggests a “blessing of
dimensionality”, recovering latent factors better in higher-d.

* Applications in latent factor discovery and covariance estimation useful in
many domains: neuroscience, finance, and gene expression
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https://github.com/gregversteeg/LinearCorex (numpy), § (for any distribution) 1t (for Gaussians)
https://github.com/hrayrhar/T-CorEx (PyTorch) TC(X | Z)+TC(Z) =0, & Vi, TC(Z | X;) =0
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