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How can we ensure that the predicted confidence scores are “meaningful™?
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Calibrated model

A calibrated model reports
predictions consistent with empirically observed frequencies of outcomes.

Prediction Empirical frequency
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Multi-class classification: All scores matter!

B Juozas Vaicenavicius et al. “Evaluating model calibration in classification”. In: Proceedings of Machine Learning Research (2019)
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object human animal
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Common calibration evaluation techniques consider only the most-confident score

Common approaches do not distinguish between object human animal
the two predictions even though the control ac- 80% 0% 20%
tions based on these might be very different! 80% 20% 0%
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Unifying framework of calibration errors
» Based on the full predictions with all scores
» Encompasses existing measures such as the expected calibration error (ECE)
» Enables derivation of a kernel calibration error (KCE)

Estimating calibration errors

» The standard ECE estimator is usually biased and inconsistent

» The KCE yields unbiased and consistent estimators
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Our contribution: Calibration tests in multi-class classification

Calibration errors have no meaningful unit or scale ]
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Test the null hypothesis Hy := “model is calibrated”
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Test the null hypothesis Hy := “model is calibrated”

I f f f f
1 O O o o
MK % 0 reject Hp if the
v = B
I Q p-value is small
! ‘\ = 0
,’ v L P © >
L I g L1227 | |
—01  _5.10-2 0 5.10-2 0.1 0.15 0.2

calibration error estimate

- - - distribution under Hy
£72271 p-value

B Jochen Brécker and Leonard A. Smith. “Increasing the reliability of reliability diagrams”. In: Weather and Forecasting (2007)

B Juozas Vaicenavicius et al. “Evaluating model calibration in classification”. In: Proceedings of Machine Learning Research (2019)

6/6



Our contribution: Calibration tests in multi-class classification

Test the null hypothesis Hy := “model is calibrated”

I f f f f
1 O O o o
MK Q 0 reject Hp if the
0 \ g o .
- g p-value is small
’I \ TU - - —G
' v L Phe >
Lz | Y- L_1% | |
—01  _5.10-2 0 5.10-2 0.1 0.15 0.2

calibration error estimate

- - - distribution under Hy
p-value

» Existing ECE-based approach seems prone to underestimating the p-value
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» Existing ECE-based approach seems prone to underestimating the p-value

» Well-founded bounds and approximations of the p-value for the KCE
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Thank you for listening!

Come see our poster #39

Code available at:
https://github.com/devmotion/CalibrationPaper


https://github.com/devmotion/CalibrationPaper

