

Calibration tests in multi-class classification: A unifying framework

David Widmann* Fredrik Lindsten[‡] Dave Zachariah*

*Department of Information Technology, Uppsala University, Sweden

[‡]Division of Statistics and Machine Learning, Linköping University, Sweden

Skin image

How can we ensure that the predicted confidence scores are "meaningful"?

Calibrated model

Juozas Vaicenavicius et al. "Evaluating model calibration in classification". In: Proceedings of Machine Learning Research (2019)

Juozas Vaicenavicius et al. "Evaluating model calibration in classification". In: Proceedings of Machine Learning Research (2019)

Juozas Vaicenavicius et al. "Evaluating model calibration in classification". In: Proceedings of Machine Learning Research (2019)

Common calibration evaluation techniques consider only the most-confident score

Juozas Vaicenavicius et al. "Evaluating model calibration in classification". In: Proceedings of Machine Learning Research (2019)

Common calibration evaluation techniques consider only the most-confident score

Common approaches do not distinguish between the two predictions even though the control actions based on these might be very different!

object	human	animal
80%	0%	20%
80%	20%	0%

Juozas Vaicenavicius et al. "Evaluating model calibration in classification". In: Proceedings of Machine Learning Research (2019)

Unifying framework of calibration errors

▶ Based on the full predictions with all scores

Unifying framework of calibration errors

- ▶ Based on the full predictions with all scores
- ▶ Encompasses existing measures such as the expected calibration error (ECE)

Unifying framework of calibration errors

- ▶ Based on the full predictions with all scores
- ▶ Encompasses existing measures such as the expected calibration error (ECE)
- ► Enables derivation of a kernel calibration error (KCE)

Unifying framework of calibration errors

- ▶ Based on the full predictions with all scores
- ▶ Encompasses existing measures such as the expected calibration error (ECE)
- ► Enables derivation of a kernel calibration error (KCE)

Estimating calibration errors

lacktriangleright The standard ECE estimator is usually biased and inconsistent

Unifying framework of calibration errors

- ▶ Based on the full predictions with all scores
- ▶ Encompasses existing measures such as the expected calibration error (ECE)
- ► Enables derivation of a kernel calibration error (KCE)

Estimating calibration errors

- lacktriangleright The standard ECE estimator is usually biased and inconsistent
- ▶ The KCE yields unbiased and consistent estimators

Calibration errors have no meaningful unit or scale

Jochen Bröcker and Leonard A. Smith. "Increasing the reliability of reliability diagrams". In: Weather and Forecasting (2007)

Juozas Vaicenavicius et al. "Evaluating model calibration in classification". In: Proceedings of Machine Learning Research (2019)

Jochen Bröcker and Leonard A. Smith. "Increasing the reliability of reliability diagrams". In: Weather and Forecasting (2007)

Juozas Vaicenavicius et al. "Evaluating model calibration in classification". In: Proceedings of Machine Learning Research (2019)

Jochen Bröcker and Leonard A. Smith. "Increasing the reliability of reliability diagrams". In: Weather and Forecasting (2007)

Juozas Vaicenavicius et al. "Evaluating model calibration in classification". In: Proceedings of Machine Learning Research (2019)

Jochen Bröcker and Leonard A. Smith. "Increasing the reliability of reliability diagrams". In: Weather and Forecasting (2007)

Juozas Vaicenavicius et al. "Evaluating model calibration in classification". In: Proceedings of Machine Learning Research (2019)

lacktriangle Existing ECE -based approach seems prone to underestimating the p-value

[🖺] Jochen Bröcker and Leonard A. Smith. "Increasing the reliability of reliability diagrams". In: Weather and Forecasting (2007)

Juozas Vaicenavicius et al. "Evaluating model calibration in classification". In: Proceedings of Machine Learning Research (2019)

- lacktriangle Existing $\mathrm{ECE} ext{-}\mathrm{based}$ approach seems prone to underestimating the p-value
- ▶ Well-founded bounds and approximations of the p-value for the KCE

Jochen Bröcker and Leonard A. Smith. "Increasing the reliability of reliability diagrams". In: Weather and Forecasting (2007)

Juozas Vaicenavicius et al. "Evaluating model calibration in classification". In: Proceedings of Machine Learning Research (2019)

Thank you for listening!

Come see our poster #39

Code available at:

https://github.com/devmotion/CalibrationPaper