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Calibrated model

A calibrated model reports
predictions consistent with empirically observed frequencies of outcomes.
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Multi-class classification: All scores matter!
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Common calibration evaluation techniques consider only the most-confident score

Common approaches do not distinguish between
the two predictions even though the control ac-
tions based on these might be very different!

object human animal

80% 0% 20%
80% 20% 0%

Juozas Vaicenavicius et al. “Evaluating model calibration in classification”. In: Proceedings of Machine Learning Research (2019)
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Our contribution: Calibration errors in multi-class classification

Unifying framework of calibration errors

I Based on the full predictions with all scores

I Encompasses existing measures such as the expected calibration error (ECE)

I Enables derivation of a kernel calibration error (KCE)

Estimating calibration errors

I The standard ECE estimator is usually biased and inconsistent

I The KCE yields unbiased and consistent estimators
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Our contribution: Calibration tests in multi-class classification

Calibration errors have no meaningful unit or scale
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Our contribution: Calibration tests in multi-class classification

Test the null hypothesis H0 := “model is calibrated”
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Thank you for listening!

Come see our poster #39

Code available at:
https://github.com/devmotion/CalibrationPaper

6/6

https://github.com/devmotion/CalibrationPaper

