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TL;DR

Same minimax bounds to model-based RL with
short-term and long-term planning

Factor of S less computations, same performance
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Model Based or Model Free Reinforcement Learning?

Provably efficient RL in Finite-Horizon MDPs:

Model-Based RL: Minimax regret O(
√
HSAT ).

Model-Free RL: Q-learning regret O(
√
H3SAT ).

– S,A state and action space cardinality

– H horizon of the MDP

– T total number of samples

Model-Based RL has better sample complexity
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Motivation: Why not using Model-Based RL?

Model-Based RL:

Space Complexity O(S2A),

Computational Complexity per-episode O(S2AH),

Model-Free RL:

Space Complexity O(SAH),

Computational Complexity per-episode O(AH),
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Motivation: Why the High Computational Complexity?

Long term planning, solve an MDP, in each episode.

Algorithm 1: Generic Model-Based RL

for episode k = 1, 2, . . . do
πk ← Optimal policy of an optimistic / sampled MDP
Act and gather experience by πk

end for

e.g., Azar et al. [2017], Brafman and Tennenholtz [2002], Dann et al. [2018], Jaksch et al. [2010], Kearns and Singh [2002],

Osband et al. [2013], Russo [2019], Simchowitz and Jamieson [2019], Zanette and Brunskill [2019] and more...

In practice, only short-term planning is used.
Does it perform worse?
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This Work: Model-Based RL with Short-Term Planning

Model-Based RL with short-term planning
is minimax optimal for finite-horizon MDPs.

Algorithm 5: Generic (Optimistic) Model-Based RL with Greedy Policies

for episode k = 1, 2, . . . do
for time step t = 1, . . . ,H do
akt ← Greedy policy current state skt w.r.t. an optimistic value Vk
Act with akt and observe rt, s

k
t+1

end for
Update model with gathered experience

end for

Greedy policy from st w.r.t. V is a 1-step planning operation:

a ∈ argmaxa E[r(st, a) + V (st+1) | st].
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This Work: Model-Based RL with Short-Term Planning

Model-Based RL with short-term planning
is minimax optimal for finite-horizon MDPs.

Free lunch: Factor of S less computations, same performance.

Open Question: Why using lookahead policies in RL
if 1-step planning is minimax optimal?
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Meet us at the poster session!

Poster’s at Hall B + C #191

Thank you!
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