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Goals

• In reinforcement learning, agents need to explore their environment to learn which 
actions maximize rewards 


• exploration is often random trial and error


• we want to do exploration that is robust and targeted 


• robust: does not destabilize the system or cause failure 

• targeted: provides knowledge that helps complete the task
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Balancing the tradeoff…

• There typically exists a tradeoff between exploration and exploitation

• actions that provide the most information about the environment may incur high 
short term costs 
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Balancing the tradeoff…

• There typically exists a tradeoff between exploration and exploitation

• actions that provide the most information about the environment may incur high 
short term costs 

• We achieve the optimal tradeoff between exploration and exploitation by formulating 
the search for a policy as a convex optimization problem, that can be solved to 
global optimality
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Balancing the tradeoff…

• There typically exists a tradeoff between exploration and exploitation

• actions that provide the most information about the environment may incur high 
short term costs 

• We achieve the optimal tradeoff between exploration and exploitation by formulating 
the search for a policy as a convex optimization problem, that can be solved to 
global optimality

• Relies only strong assumptions about the environment…
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Linear quadratic control

Task: find a state-feedback controller to minimize the quadratic cost


�  
T

∑
t=0

x⊤
t Qxt + u⊤

t Rut

xt+1 = Axt +But + wt

wt ⇠ N (0,⇧)
ut xt
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Linear quadratic control

Task: find a state-feedback controller to minimize the quadratic cost


�  
T

∑
t=0

x⊤
t Qxt + u⊤

t Rut

Challenge: we don’t know the system parameters �  A, B, Π

xt+1 = Axt +But + wt

wt ⇠ N (0,⇧)
ut xt

xt+1 = Axt +But + wt

wt ⇠ N (0,⇧),
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Key quantity: empirical covariance

• The key quantity in our formulation is the empirical covariance  D =
T

∑
t=0

[xt
ut] [xt

ut]
⊤

• Shows up in both
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Key quantity: empirical covariance

• The key quantity in our formulation is the empirical covariance  D =
T

∑
t=0

[xt
ut] [xt

ut]
⊤

• Shows up in both

• the cost,  , where “smaller” is better for lower costtrace [Q 0
0 R] D

• the system uncertainty (i.e. inverse variance of the posterior), , where “bigger” 
is better for reduced uncertainty 

D ⊗ I

• This clearly illustrates the exploration (“big”) and exploitation (“small”) tradeoff
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Convex formulation

(Simplified) optimization problem:

min
D

trace [Q 0
0 R] D

s.t. [ ⋆ ⋆
⋆ D ] ⪰ 0

quadratic cost function �
T

∑
t=0

x⊤
t Qxt + u⊤

t Rut

robust stability constraint: 
ensures stability of the true system 
with high probability 
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Convex formulation

(Simplified) optimization problem:

min
D

trace [Q 0
0 R] D

s.t. [ ⋆ ⋆
⋆ D ] ⪰ 0

• As this is a convex program (linear objective + linear matrix inequality constraint) we 
can solve efficiently to global optimality

• This provides the optimal balance between exploration and exploitation

quadratic cost function �
T

∑
t=0

x⊤
t Qxt + u⊤

t Rut

robust stability constraint: 
ensures stability of the true system 
with high probability 
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Preserving structure in uncertainty

• recent works consider absolute measures of uncertainty

 ∥Aest − Atrue∥ ≤ ϵA , ∥Best − Btrue∥ ≤ ϵB

• all uncertainty information is collapsed into a single scalar; structure is lost



NeurIPS 2019 Tue Dec 10th 05:30 -- 07:30 PM @ East Exhibition Hall B + C #177

Preserving structure in uncertainty

• recent works consider absolute measures of uncertainty

 ∥Aest − Atrue∥ ≤ ϵA , ∥Best − Btrue∥ ≤ ϵB

• all uncertainty information is collapsed into a single scalar; structure is lost

• we preserve structure by working with the matrix D =
T

∑
t=0

[xt
ut] [xt

ut]
⊤

• allows to optimize for reduction of uncertainty in the parameters that matter for the 
task
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less uncertainty !  lower cost≠

• performance of proposed method is better, even though absolute uncertainty is larger


• the structure of the uncertainty matters 


• uncertainty has been reduced in the parameters that matter for the control task
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Processing Systems (NeurIPS), Montréal, Canada, December 2018.
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