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e |n reinforcement learning, agents need to explore their environment to learn which
actions maximize rewards

e exploration is often random trial and error
e we want to do exploration that is robust and targeted
* robust: does not destabilize the system or cause failure

e targeted: provides knowledge that helps complete the task
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* There typically exists a tradeoff between exploration and exploitation

e actions that provide the most information about the environment may incur high
short term costs
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* There typically exists a tradeoff between exploration and exploitation

e actions that provide the most information about the environment may incur high
short term costs

 We achieve the optimal tradeoff between exploration and exploitation by formulating
the search for a policy as a convex optimization problem, that can be solved to
global optimality
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* There typically exists a tradeoff between exploration and exploitation

e actions that provide the most information about the environment may incur high
short term costs

 We achieve the optimal tradeoff between exploration and exploitation by formulating

the search for a policy as a convex optimization problem, that can be solved to
global optimality

e Relies only strong assumptions about the environment...
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Tt = Aft + Bug + wy
Wy ~ N(07 H>

Task: find a state-feedback controller to minimize the quadratic cost
T

T T
Z X, Ox, + u, Ru,
=0
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Tt = AfL't + Buy + wy
W r~ N(O, H),

Task: find a state-feedback controller to minimize the quadratic cost
T

T T
Z X, Ox, + u, Ru,
=0

Challenge: we don’t know the system parameters A, 5, 11
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T T
X | |x
o The key quantity in our formulation is the empirical covariance D = Z [ut] [ut]
[ 4
=0

e Shows up in both
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T T
X | |x
o The key quantity in our formulation is the empirical covariance D = Z [ut] [ut]
[ 4
=0

e Shows up in both

Q0 0

0 R] D , where “smaller” is better for lower cost

e the cost, trace [
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T T
X | |x
o The key quantity in our formulation is the empirical covariance D = Z [ut] [ut]
[ 4
=0

e Shows up in both

Q0 0

0 R] D , where “smaller” is better for lower cost

e the cost, trace [

e the system uncertainty (i.e. inverse variance of the posterior), D & I, where “bigger”
is better for reduced uncertainty

e This clearly illustrates the exploration (“big”) and exploitation (“small”) tradeoff
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# Convex formulation
(Simplified) optimization problem:
0 T
min trace [) <— quadratic cost function Z xtT Ox, + utT Ru,
D 0O R =0
* Kk robust stability constraint:
S.1. % D > 0 <4— ensures stability of the true system

with high probability
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(Simplified) optimization problem:

T
min trace Q [) <— quadratic cost function Z xtT Ox, + utT Ru,
D O R =0
* % robust stability constraint:
S.1. % D > 0 <4— ensures stability of the true system

with high probability

e As this is a convex program (linear objective + linear matrix inequality constraint) we
can solve efficiently to global optimality

 This provides the optimal balance between exploration and exploitation
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* recent works consider absolute measures of uncertainty

HAest _AtrueH < €4 > HBest _ Btrue” < €p

e all uncertainty information is collapsed into a single scalar; structure is lost
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* recent works consider absolute measures of uncertainty

HAest _AtrueH < €4 > HBest _ Btrue” < €p

e all uncertainty information is collapsed into a single scalar; structure is lost

T T
x| | X
e we preserve structure by working with the matrix D = Z [ut ut
[ [
=0

* allows to optimize for reduction of uncertainty in the parameters that matter for the
task
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 performance of proposed method is better, even though absolute uncertainty is larger
e the structure of the uncertainty matters

e uncertainty has been reduced in the parameters that matter for the control task
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