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Policy Gradients are greedy



Policy gradients are greedy
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Modern Policy Gradient
Methods use a Lower bound



Lower bound on critic
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...this becomes too large + effect amplified by policy optimisation
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conservative update reduces overestimation

van Hasselt (2010, 2016), Fujimoto et al (2018)
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Greediness + Lower Bound
Lead To Problems



First problem: pessimistic underexploration
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Second problem: directional uninformedness
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Solve these Problems by
Exploring with Upper Bound



Use the bootstrap to make an upper bound.

level of optimism



How to choose the exploration policy

We want a policy that:
* |s close to target policy.

* Maximises the critic upper bound.
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How to choose the exploration policy

We want a policy that:
* |s close to target policy.

* Maximises the critic upper bound.

argmax  Eq oy (u,z) [Qus(s,a)]
KL(N (1, 8) N (g B)) €5

Linearize!



The OAC exploration policy (interpretation)

e =N(ug. Xg), HEZ;UT+” r[VaQua(s,ia)] _ ~ and XLp = Xr.

OAC explores with a shifted policy!

shift in the direction given by upper bound.




OAC explores efficiently
Q™. m(a)
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OAC is directionally informed

OAC avoids spurious maximum



't works!
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No hyperparameters were tuned on Humanoid!




Visual Comparison

OAC (our approach)

SAC (previous state of the art)
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