Guided Meta-Policy Search

Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel,
Sergey Levine, Chelsea Finn

L BAR

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH



High Sample Complexity of RL

Hopper - v1

Ant - vi












High Sample Complexity of RL

4000
3000
£
= |
5]
= 2000
(0]
Hopper - v1
8 1000
0 &
00 02 0.4 0.6 0.8
million steps
6000 \
Ant - vi

1 million
u%:m:: ; . timesteps






Meta-Learning
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Challenges of Meta-training
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Challenges of Meta-training

High Sample Complexity Harder Tasks
(involving exploration / vision)
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Need a policy that can quickly adapt to solve any task from the distribution of training tasks
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Need a policy that can quickly adapt to solve any task from the distribution of training tasks
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Experimental Setup
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Comparison to on-policy meta-RL methods
(Sample Efficiency)
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Post-Update Average Return

Meta-Learning from Demos : Sparse Reward
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Meta-Learning from Demos : Visual Observations
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GMPS decouples meta-optimization
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Please come visit our poster at East Exhibition Hall B+C #42, 5:30 - 7:30 pm

Github : russellmendonca/GMPS
Website : sites.gooale.com/berkeley.edu/quided-metapolicy-search
Contact : russellm@berkeley.edu



https://github.com/russellmendonca/GMPS
https://sites.google.com/berkeley.edu/guided-metapolicy-search/home
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