Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement #### NeurIPS 2019 Chao Yang*¹, Xiaojian Ma*¹, Wenbing Huang*¹, Fuchun Sun¹, Huaping Liu¹, Junzhou Huang², Chuang Gan³ *Denotes equal contribution ¹Tsinghua University, ²Tencent AI Lab, ³MIT-IBM Watson AI Lab ## Imitation learning (IL,LfD) #### without reward - MDP Formulation: $\langle S, A, T(s'|s, a), r(s, a), u, \gamma \rangle$ - An agent policy: $\pi(a|s)$ ## Imitation learning (IL,LfD) #### without reward - MDP Formulation: $\langle S, A, T(s'|s,a), r(s,a), u, \gamma \rangle$ - An agent policy: $\pi(a|s)$ - Instead, a set of expert's demonstrations: $$D = \{\tau_1, \dots, \tau_m\} = \{(s_0, a_0, s_1, a_1, \dots)\} \sim \pi_E(a|s)$$ • State-action or state-transition distribution of a policy π : $$\rho_{\pi}(s,a)$$ or $\rho_{\pi}(s,s')$ • LfD goal: learning a policy of agent from expert demonstrations # Imitation learning from observations (LfO) • Given a set of expert's observations: $$D = \{\tau_1, \dots, \tau_m\} = \{(s_0, a_0, s_1, a_1, \dots)\}$$ without actions # Imitation learning from observations (LfO) • Given a set of expert's observations: $$D = \{\tau_1, \dots, \tau_m\} = \{(s_0, a_0, s_1, a_1, \dots)\}$$ without actions # Imitation learning from observations (LfO) • Given a set of expert's observations: $$D = \{\tau_1, \dots, \tau_m\} = \{(s_0, a_0, s_1, a_1, \dots)\}$$ without actions #### Advantage: - To save demo collection effort. - Learning from internet videos. - Human imitation never know what expert actions exactly are. #### GAIL or AIRL: $$\min_{\pi} D_f(\rho_{\pi}(s, a) || \rho_E(s, a))$$ - D_f could be KL or JS divergence. - Adversarial training for divergence minimization. Seyed & Zemel, CoRL'19 Ho & Ermon, NIPS'16, Fu, Finn, ICLR'18, ICML'16 #### GAIL or AIRL: $$\min_{\pi} D_f(\rho_{\pi}(s, a) || \rho_E(s, a))$$ - D_f could be KL or JS divergence. - Adversarial training for divergence minimization. Seyed & Zemel, CoRL'19 Ho & Ermon, NIPS'16, Fu, Finn, ICLR'18, ICML'16 Intuitively generalize to LfO #### GAIL or AIRL: $$\min_{\pi} D_f(\rho_{\pi}(s, a) || \rho_E(s, a))$$ - D_f could be KL or JS divergence. - Adversarial training for divergence minimization. Seyed & Zemel, CoRL'19 Ho & Ermon, NIPS'16, Fu, Finn, ICLR'18, ICML'16 Intuitively generalize to LfO #### GAIfO: $$\min_{\pi} D_f(\rho_{\pi}(s, s') || \rho_E(s, s'))$$ • Can bridging the state transition distribution of agent and expert sufficiently mimic expert behavior? Torabi, et al. IJCAI'19 GAIL or AIRL: $\min D \cdot (a \cdot (c \cdot a)) = (c \cdot a)$ Savad & Jamal Capl'10 $$D_f(\rho_{\pi}(a|s,s')||\rho_E(a|s,s')) = D_f(\rho_{\pi}(s,a)||\rho_E(s,a)) - D_f(\rho_{\pi}(s,s')||\rho_E(s,s'))$$ $$\rho(a|s,s'): \text{ inverse dynamic model}$$ π • Can bridging the state transition distribution of agent and expert sufficiently mimic expert behavior? Torabi, et al. IJCAI'19 #### IDD = GAIL - GAIfO - Inverse dynamic model disagreement (IDD): - The gap between GAIL and GAIfO - GAIL is a upper-bound of GAIfO #### IDD = GAIL - GAIFO #### Inverse dynamic model disagreement (IDD): - The gap between GAIL and GAIfO - GAIL is a upper-bound of GAIfO #### • IDD vanishment: • If the dynamics model T(s'|s,a) is an **injective** mapping, $$D_f(\rho_{\pi}(s,a)||\rho_E(s,a)) = D_f(\rho_{\pi}(s,s')||\rho_E(s,s').$$ ## Inverse dynamic disagreement minimization(IDDM) The overall objective is: $$|DD| := D_f(\rho_{\pi}(a|s,s')||\rho_E(a|s,s')) \le -\mathcal{H}_{\pi}(s,a) + const.$$ ### Inverse dynamic disagreement minimization(IDDM) The overall objective is: ### Inverse dynamic disagreement minimization(IDDM) #### The overall objective is: #### Toy navigation ### OpenAl-Gym tasks Quantitative performance (original reward) | • | CartPole | Pendulum | DoublePendulum | Hopper | HalfCheetah | Ant | |-----------|-----------------|------------------|---------------------|---------------------|-------------------|---------------------| | DeepMimic | - | 731.0±19.0 | 454.4 ± 154.0 | 2292.6±1068.9 | 202.6 ± 4.4 | -985.3±13.6 | | BCO | 200.0 ± 0.0 | 24.9 ± 0.8 | 80.3 ± 13.1 | 1266.2 ± 1062.8 | 4557.2 ± 90.0 | 562.5 ± 384.1 | | GAIfO | 197.5 ± 7.3 | 980.2 ± 3.0 | 4240.6 ± 4525.6 | 1021.4 ± 0.6 | 3955.1 ± 22.1 | -1415.0 ± 161.1 | | GAIfO-s* | 200.0 ± 0.0 | 952.1 ± 23.0 | 1089.2 ± 51.4 | 1022.5 ± 0.40 | 2896.5 ± 53.8 | -5062.3 ± 56.9 | | Ours | 200.0±0.0 | 1000.0 ± 0.0 | 9359.7 ± 0.2 | 3300.9 ± 52.1 | 5699.3±51.8 | 2800.4 ± 14.0 | | GAIL | 200.0±0.0 | 1000.0 ± 0.0 | 9174.8±1292.5 | 3249.9 ± 34.0 | 6279.0±56.5 | 5508.8±791.5 | | Expert | 200.0 ± 0.0 | 1000.0 ± 0.0 | 9318.8 ± 8.5 | 3645.7 ± 181.8 | 5988.7 ± 61.8 | 5746.8 ± 117.5 | ^{*}GAIfO with single state only. #### OpenAI-Gym tasks Quantitative performance (original reward) | | CartPole | Pendulum | DoublePendulum | Hopper | HalfCheetah | Ant | |-----------|-----------------|------------------|---------------------|---------------------|-------------------|---------------------| | DeepMimic | - | 731.0±19.0 | 454.4 ± 154.0 | 2292.6±1068.9 | 202.6 ± 4.4 | -985.3 ± 13.6 | | BCO | 200.0 ± 0.0 | 24.9 ± 0.8 | 80.3 ± 13.1 | 1266.2 ± 1062.8 | 4557.2 ± 90.0 | 562.5 ± 384.1 | | GAIfO | 197.5 ± 7.3 | 980.2 ± 3.0 | 4240.6 ± 4525.6 | 1021.4 ± 0.6 | 3955.1 ± 22.1 | -1415.0 ± 161.1 | | GAIfO-s* | 200.0 ± 0.0 | 952.1 ± 23.0 | 1089.2 ± 51.4 | 1022.5 ± 0.40 | 2896.5 ± 53.8 | -5062.3 ± 56.9 | | Ours | 200.0±0.0 | 1000.0 ± 0.0 | 9359.7 ± 0.2 | 3300.9 ± 52.1 | 5699.3±51.8 | 2800.4 ± 14.0 | | GAIL | 200.0±0.0 | 1000.0±0.0 | 9174.8±1292.5 | 3249.9 ± 34.0 | 6279.0±56.5 | 5508.8±791.5 | | Expert | 200.0 ± 0.0 | 1000.0 ± 0.0 | 9318.8 ± 8.5 | 3645.7 ± 181.8 | 5988.7 ± 61.8 | 5746.8 ± 117.5 | ^{*}GAIfO with single state only. More learning curve, num of demos and ablation experiments can be found in our paper and supplementary. ### OpenAI-Gym tasks Quantitative performance (original reward) For more information, please come to our poster session! Tue Dec 10th 05:30 -- 07:30 PM @ East Exhibition Hall B + C #205 #### **Thanks** More learning curve, num of demos and ablation experiments can be found in our paper and supplementary.