Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement

NeurIPS 2019

Chao Yang*¹, Xiaojian Ma*¹, Wenbing Huang*¹, Fuchun Sun¹, Huaping Liu¹, Junzhou Huang², Chuang Gan³

*Denotes equal contribution

¹Tsinghua University, ²Tencent AI Lab, ³MIT-IBM Watson AI Lab

Imitation learning (IL,LfD)

without reward

- MDP Formulation: $\langle S, A, T(s'|s, a), r(s, a), u, \gamma \rangle$
- An agent policy: $\pi(a|s)$

Imitation learning (IL,LfD)

without reward

- MDP Formulation: $\langle S, A, T(s'|s,a), r(s,a), u, \gamma \rangle$
- An agent policy: $\pi(a|s)$
- Instead, a set of expert's demonstrations:

$$D = \{\tau_1, \dots, \tau_m\} = \{(s_0, a_0, s_1, a_1, \dots)\} \sim \pi_E(a|s)$$

• State-action or state-transition distribution of a policy π :

$$\rho_{\pi}(s,a)$$
 or $\rho_{\pi}(s,s')$

• LfD goal: learning a policy of agent from expert demonstrations

Imitation learning from observations (LfO)

• Given a set of expert's observations:

$$D = \{\tau_1, \dots, \tau_m\} = \{(s_0, a_0, s_1, a_1, \dots)\}$$

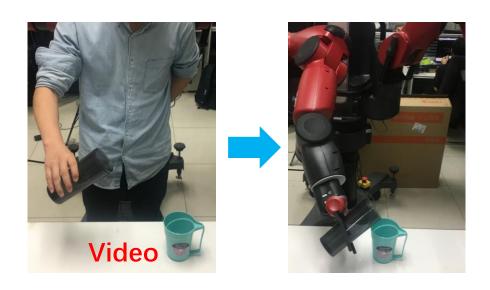
without actions

Imitation learning from observations (LfO)

• Given a set of expert's observations:

$$D = \{\tau_1, \dots, \tau_m\} = \{(s_0, a_0, s_1, a_1, \dots)\}$$

without actions



Imitation learning from observations (LfO)

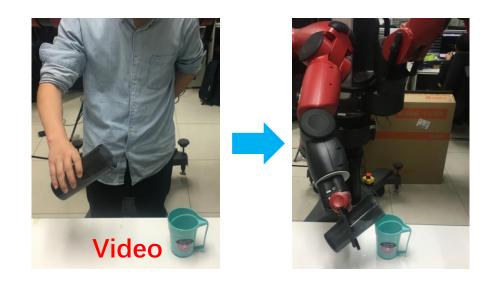
• Given a set of expert's observations:

$$D = \{\tau_1, \dots, \tau_m\} = \{(s_0, a_0, s_1, a_1, \dots)\}$$

without actions

Advantage:

- To save demo collection effort.
- Learning from internet videos.
- Human imitation never know what expert actions exactly are.



GAIL or AIRL:

$$\min_{\pi} D_f(\rho_{\pi}(s, a) || \rho_E(s, a))$$

- D_f could be KL or JS divergence.
- Adversarial training for divergence minimization.

Seyed & Zemel, CoRL'19 Ho & Ermon, NIPS'16, Fu, Finn, ICLR'18, ICML'16

GAIL or AIRL:

$$\min_{\pi} D_f(\rho_{\pi}(s, a) || \rho_E(s, a))$$

- D_f could be KL or JS divergence.
- Adversarial training for divergence minimization.

Seyed & Zemel, CoRL'19 Ho & Ermon, NIPS'16, Fu, Finn, ICLR'18, ICML'16

Intuitively generalize to LfO

GAIL or AIRL:

$$\min_{\pi} D_f(\rho_{\pi}(s, a) || \rho_E(s, a))$$

- D_f could be KL or JS divergence.
- Adversarial training for divergence minimization.

Seyed & Zemel, CoRL'19 Ho & Ermon, NIPS'16, Fu, Finn, ICLR'18, ICML'16

Intuitively generalize to LfO

GAIfO:

$$\min_{\pi} D_f(\rho_{\pi}(s, s') || \rho_E(s, s'))$$

• Can bridging the state transition distribution of agent and expert sufficiently mimic expert behavior?

Torabi, et al. IJCAI'19

GAIL or AIRL:

 $\min D \cdot (a \cdot (c \cdot a)) = (c \cdot a)$

Savad & Jamal Capl'10

$$D_f(\rho_{\pi}(a|s,s')||\rho_E(a|s,s')) = D_f(\rho_{\pi}(s,a)||\rho_E(s,a)) - D_f(\rho_{\pi}(s,s')||\rho_E(s,s'))$$

$$\rho(a|s,s'): \text{ inverse dynamic model}$$

 π

• Can bridging the state transition distribution of agent and expert sufficiently mimic expert behavior?

Torabi, et al. IJCAI'19

IDD = GAIL - GAIfO

- Inverse dynamic model disagreement (IDD):
 - The gap between GAIL and GAIfO
 - GAIL is a upper-bound of GAIfO

IDD = GAIL - GAIFO

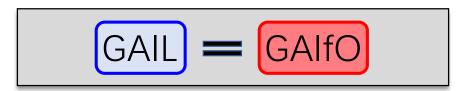
Inverse dynamic model disagreement (IDD):

- The gap between GAIL and GAIfO
- GAIL is a upper-bound of GAIfO

• IDD vanishment:

• If the dynamics model T(s'|s,a) is an **injective** mapping,

$$D_f(\rho_{\pi}(s,a)||\rho_E(s,a)) = D_f(\rho_{\pi}(s,s')||\rho_E(s,s').$$



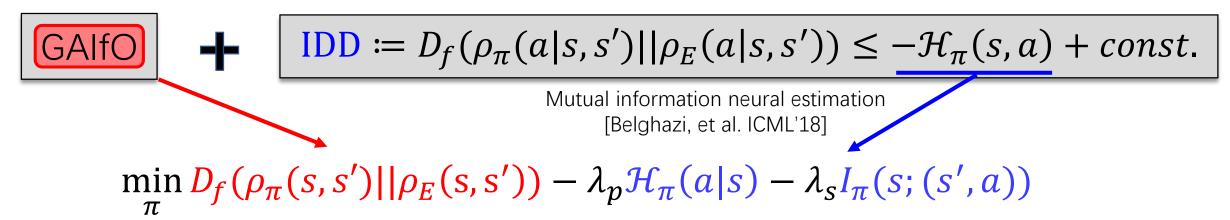
Inverse dynamic disagreement minimization(IDDM)

The overall objective is:

$$|DD| := D_f(\rho_{\pi}(a|s,s')||\rho_E(a|s,s')) \le -\mathcal{H}_{\pi}(s,a) + const.$$

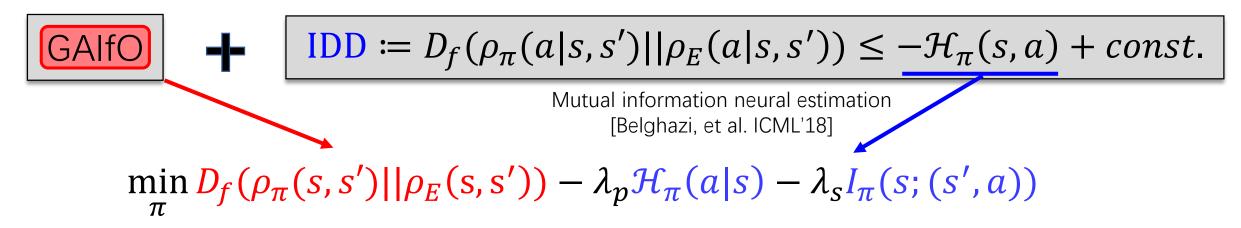
Inverse dynamic disagreement minimization(IDDM)

The overall objective is:

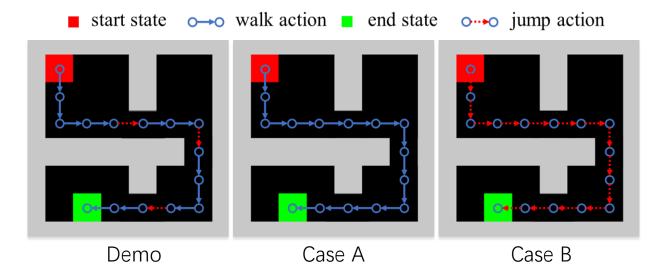


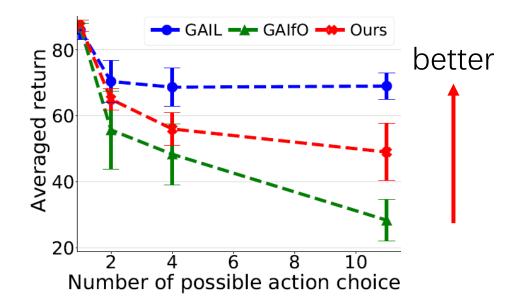
Inverse dynamic disagreement minimization(IDDM)

The overall objective is:



Toy navigation





OpenAl-Gym tasks

Quantitative performance (original reward)

•	CartPole	Pendulum	DoublePendulum	Hopper	HalfCheetah	Ant
DeepMimic	-	731.0±19.0	454.4 ± 154.0	2292.6±1068.9	202.6 ± 4.4	-985.3±13.6
BCO	200.0 ± 0.0	24.9 ± 0.8	80.3 ± 13.1	1266.2 ± 1062.8	4557.2 ± 90.0	562.5 ± 384.1
GAIfO	197.5 ± 7.3	980.2 ± 3.0	4240.6 ± 4525.6	1021.4 ± 0.6	3955.1 ± 22.1	-1415.0 ± 161.1
GAIfO-s*	200.0 ± 0.0	952.1 ± 23.0	1089.2 ± 51.4	1022.5 ± 0.40	2896.5 ± 53.8	-5062.3 ± 56.9
Ours	200.0±0.0	1000.0 ± 0.0	9359.7 ± 0.2	3300.9 ± 52.1	5699.3±51.8	2800.4 ± 14.0
GAIL	200.0±0.0	1000.0 ± 0.0	9174.8±1292.5	3249.9 ± 34.0	6279.0±56.5	5508.8±791.5
Expert	200.0 ± 0.0	1000.0 ± 0.0	9318.8 ± 8.5	3645.7 ± 181.8	5988.7 ± 61.8	5746.8 ± 117.5

^{*}GAIfO with single state only.

OpenAI-Gym tasks

Quantitative performance (original reward)

	CartPole	Pendulum	DoublePendulum	Hopper	HalfCheetah	Ant
DeepMimic	-	731.0±19.0	454.4 ± 154.0	2292.6±1068.9	202.6 ± 4.4	-985.3 ± 13.6
BCO	200.0 ± 0.0	24.9 ± 0.8	80.3 ± 13.1	1266.2 ± 1062.8	4557.2 ± 90.0	562.5 ± 384.1
GAIfO	197.5 ± 7.3	980.2 ± 3.0	4240.6 ± 4525.6	1021.4 ± 0.6	3955.1 ± 22.1	-1415.0 ± 161.1
GAIfO-s*	200.0 ± 0.0	952.1 ± 23.0	1089.2 ± 51.4	1022.5 ± 0.40	2896.5 ± 53.8	-5062.3 ± 56.9
Ours	200.0±0.0	1000.0 ± 0.0	9359.7 ± 0.2	3300.9 ± 52.1	5699.3±51.8	2800.4 ± 14.0
GAIL	200.0±0.0	1000.0±0.0	9174.8±1292.5	3249.9 ± 34.0	6279.0±56.5	5508.8±791.5
Expert	200.0 ± 0.0	1000.0 ± 0.0	9318.8 ± 8.5	3645.7 ± 181.8	5988.7 ± 61.8	5746.8 ± 117.5

^{*}GAIfO with single state only.

 More learning curve, num of demos and ablation experiments can be found in our paper and supplementary.

OpenAI-Gym tasks

Quantitative performance (original reward)

For more information, please come to our poster session!

Tue Dec 10th 05:30 -- 07:30 PM @ East Exhibition Hall B + C #205

Thanks

 More learning curve, num of demos and ablation experiments can be found in our paper and supplementary.