

Likelihood-Free Overcomplete ICA and Applications In Causal Discovery

Chenwei Ding¹

Mingming Gong² Kun Zhang³

¹the University of Sydney

²The University of Melbourne

³Carnegie Mellon University

Dacheng Tao¹

Previous Works on Causal Discovery

- Constraint-based methods, e.g. PC and FCI.
- Score-based methods, e.g. GES
- Functional Causal Models, e.g. LiNGAM (ICA based)

Independent Component Analysis (ICA)

• $\mathbf{x} = \mathbf{A}\mathbf{s}$, where mixtures $\mathbf{x} \in \mathbb{R}^p$, independent components $\mathbf{s} \in \mathbb{R}^d$, mixing matrix $\mathbf{A} \in \mathbb{R}^{p \times d}$.

Overcomplete ICA

- *p* < *d*
- Some causal discovery problems, e.g. causal discovery from measurement error and causal discovery from missing common causes, can be seen as extension of OICA.

Maximum Likelihood Learning Based Solutions for OICA

- Assume parametric distribution for the ICs.
- Significant computational challenges.
- Restrictive for many real-world applications.

Likelihood Free Solution for OICA (Ours)

- No explicit assumptions on the density functions of the ICs.
- Implicitly learn the distribution of ICs.
- Computationally efficient.

LFOICA Framework

• Sample independently from some easy distribution, i.g. Gaussian.

 (z_1)

 (z_2)

 (z_3)

 (z_4)

independent Gaussian noise

LFOICA Framework

- Sample independently from some easy distribution, i.g. Gaussian.
- For each IC, initialize a separate MLP. Generate corresponding IC.

LFOICA Framework

- Sample independently from some easy distribution, i.g. Gaussian.
- For each IC, initialize a separate MLP. Generate corresponding IC.
- Initialize a mixing matrix, mix the ICs and generate the mixtures.
- Calculate the MMD between the distribution of true mixtures and the distribution of generated mixtures.
- Minimize MMD by updating the mixing matrix and the parameters in MLPs.

Causal Discovery under Measurement Error

Causal model without measurement error.

$$\tilde{\mathbf{X}} = \mathbf{B}\tilde{\mathbf{X}} + \tilde{\mathbf{E}}$$

Add measurement error to the causal model.

$$\mathbf{X} = \tilde{\mathbf{X}} + \mathbf{E} = (\mathbf{I} - \mathbf{B})^{-1}\tilde{\mathbf{E}} + \mathbf{E} = [(\mathbf{I} - \mathbf{B})^{-1}\mathbf{I}] \begin{vmatrix} \mathbf{E} \\ \mathbf{E} \end{vmatrix}$$

• The causal model with measurement error can be seen as an OICA model and LFOICA can be applied.

Causal Discovery from Subsampled Time Series

- First assume that data at the original causal frequency follows a VAR(1) process $\mathbf{x}_t = \mathbf{C}\mathbf{x}_{t-1} + \mathbf{e}_t$
- The observed subsampled data with subsampling factor k can be represented as

$$\tilde{\mathbf{x}}_{t+1} = \mathbf{C}^k \tilde{\mathbf{x}}_t + \mathbf{L} \tilde{\mathbf{e}}_{t+1}, \text{ where } \mathbf{L} = \left[\mathbf{I}, \mathbf{C}, \mathbf{C}^2, ..., \mathbf{C}^{k-1} \right] \text{ and } \tilde{\mathbf{e}}_{\mathbf{t}} = \left(\mathbf{e}_{1+tk-0}^\mathsf{T}, \mathbf{e}_{1+tk-1}^\mathsf{T}, ..., \mathbf{e}_{1+tk-(k-1)}^\mathsf{T} \right)^\mathsf{T}$$

Causal Discovery from Subsampled Time Series

• We propose to model the conditional probability $\mathbb{P}\left(\tilde{\mathbf{x}}_{t+1} \,|\, \tilde{\mathbf{x}}_t \right)$

• In this case, the model for subsampled data can be seen as an extension of OICA with ${\bf L}$ as mixing matrix and ${\bf \tilde e}_{t+1}$ as ICs. LFOICA can be applied.

Poster #45

Tue Dec 10, 2019

East Exhibition Hall B + C