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Previous Works on Causal Discovery

* Constraint-based methods, e.g. PC and FCI.
* Score-based methods, e.g. GES

* Functional Causal Models, e.g. LINGAM (ICA based)

Independent Component Analysis (ICA)

. X = As, where mixtures X € R”, independent components s € R¢, mixing matrix A & RPXd,

Overcomplete ICA

e p<d

« Some causal discovery problems, e.g. causal discovery from measurement error and causal
discovery from missing common causes, can be seen as extension of OICA.
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Maximum Likelihood Learning Based Solutions for OICA
 Assume parametric distribution for the ICs.
* Significant computational challenges.

* Restrictive for many real-world applications.

Likelihood Free Solution for OICA (Ours)

* No explicit assumptions on the density functions of the ICs.
* Implicitly learn the distribution of ICs.

e Computationally efficient.



LFOICA Framework

 Sample independently from some easy distribution, i.g. Gaussian.
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LFOICA Framework

« Sample independently from some easy distribution, i.g. Gaussian.

 For each IC, initialize a separate MLP. Generate corresponding IC.
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LFOICA Framework

 Sample independently from some easy distribution, i.g. Gaussian.
 For each IC, initialize a separate MLP. Generate corresponding IC.
* |nitialize a mixing matrix, mix the ICs and generate the mixtures.

e Calculate the MMD between the distribution of true mixtures and the distribution of generated
mixtures.

* Minimize MMD by updating the mixing matrix and the parameters in MLPs.
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> Causal Discovery under Measurement Error

e (Causal model without measurement error.
X =BX +E

e Add measurement error to the causal model.

~ ~

X=X+E=(I-B)"'E4+E=[(I-B) I

E
E

e The causal model with measurement error can be seen as an OICA model and LFOICA can be
applied.



Causal Discovery from Subsampled Time Series

» First assume that data at the original causal frequency follows a VAR(1) process X, = CXt_l + €,

* The observed subsampled data with subsampling factor k can be represented as

.
k= . 2 k—1 ~ [ .T T T
X, =C%X +Le,._, where L = [I C.C,....C ] and €, = (91+ﬂ<—0’91+ﬂ<—1» O 1)>
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> Causal Discovery from Subsampled Time Series

« We propose to model the conditional probability [P (it+1 \)’Zt)

L L L
v . A
condition condition condition

* |n this case, the model for subsampled data can be seen as an extension of OICA with L as mixing
matrix and €,, ; as ICs. LFOICA can be applied.
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