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Previous Works on Causal Discovery 

• Constraint-based methods, e.g. PC and FCI.


• Score-based methods, e.g. GES


• Functional Causal Models, e.g. LiNGAM (ICA based)


Independent Component Analysis (ICA) 

• , where mixtures , independent components , mixing matrix .


Overcomplete ICA 

• 


• Some causal discovery problems, e.g. causal discovery from measurement error and causal 
discovery from missing common causes, can be seen as extension of OICA.


x = As x ∈ ℝp s ∈ ℝd A ∈ ℝp×d

p < d
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Maximum Likelihood Learning Based Solutions for OICA  

• Assume parametric distribution for the ICs.


• Significant computational challenges.


• Restrictive for many real-world applications.


Likelihood Free Solution for OICA (Ours) 

• No explicit assumptions on the density functions of the ICs.


• Implicitly learn the distribution of ICs.


• Computationally efficient.
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4

z1 independent Gaussian noisez2 z3 z4

LFOICA Framework 

• Sample independently from some easy distribution, i.g. Gaussian.




LFOICA Framework 

• Sample independently from some easy distribution, i.g. Gaussian.


• For each IC, initialize a separate MLP. Generate corresponding IC.
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z1 independent Gaussian noise

4 different multiple layer perceptrons

ŝ1 ŝ2 ŝ3 ŝ4 independent non-Gaussian components
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LFOICA Framework 

• Sample independently from some easy distribution, i.g. Gaussian.


• For each IC, initialize a separate MLP. Generate corresponding IC.


• Initialize a mixing matrix, mix the ICs and generate the mixtures.


• Calculate the MMD between the distribution of true mixtures and the distribution of generated 
mixtures.


• Minimize MMD by updating the mixing matrix and the parameters in MLPs.
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2 Likelihood-Free Over-complete ICA

2.1 General Framework

Linear ICA assumes the following data generation model:

x = As, (1)

where x 2 Rp, s 2 Rd,A 2 Rp⇥d are known as mixtures, independent components (ICs), and
mixing matrix respectively. The elements in s are supposed to be independent from each other and
each follows a non-Gaussian distribution (or at most one of them is Gaussian). The goal of ICA is to
recover both A and s from observed mixtures x. However, in the context of causal discovery, our
main goal is to recover a constrained A matrix. When d > p, the problem is known as overcomplete
ICA (OICA).

In light of recent advances in Generative Adversarial Nets (GANs) [22], we propose to learn the
mixing matrix in the OICA model by designing a generator that allows us to draw samples easily. We
model the distribution of each source si by a function model f✓i that transforms a Gaussian variable
zi to the non-Gaussian source. More specifically, the i-th source can be generated by ŝi = f✓i(zi),
where zi ⇠ N (0, 1). Thus, the whole generator that generate x can be written as

x̂ = A[ŝ1, . . . , ŝd]
| = A[f✓1(z1), . . . , f✓d(zd)]

| = GA,✓(z), (2)

where ✓ = [✓1, . . . , ✓d]| and z = [z1, . . . , zd]|. Figure 1 shows the graphical structure of our
LFOICA generator GA,✓ with 4 sources and 3 mixtures. We use a multi-layer perceptron (MLP)
to model each f✓i . While most of the previous algorithms for both overdetermined [26, 25, 27, 28]
and overcomplete [29] scenarios try to minimized the dependence among the recovered components,
the components ŝi recovered by LFOICA are essentially independent because the noises zi are
independent, according to the generating process.

The LFOICA generator GA,✓ can be learned by minimizing the distributional distance between the
data sampled from the generator and the observed x data. Various distributional distances have been
applied in training generative networks, including the Jensen-Shannon divergence [22], Wasserstein
distance [30], and Maximum Mean Discrepancy (MMD) [31, 32]. Here we adopt MMD as the
distributional distance as it does not require an explicit discriminator network, which simplifies the
whole optimization procedure. Specifically, we learn the parameters ✓ and A in the generator by
solving the following optimization problem:

A⇤,✓⇤ = argmin
A,✓

M (P(x) ,P(GA,✓(z)))

= argmin
A,✓

��Ex⇠p(x)[� (x)]� Ez⇠p(z)[� (GA,✓(z))]
��2 , (3)

where � is the feature map of a kernel function k(·, ·). MMD can be calculated by using kernel trick
without the need for an explicit �. By choosing characteristic kernels, such as Gaussian kernel, MMD
is guaranteed to match the distributions [33]. In practice, we optimize some empirical estimator of (3)
on minibatches by stochastic gradient descent (SGD). The entire procedure is shown in Algorithm 1.

MLP ✓1 MLP ✓2 MLP ✓4MLP ✓3

z1 independent Gaussian noise

4 different multiple layer perceptrons

ŝ1 ŝ2 ŝ3 ŝ4

x̂1 x̂2 x̂3

independent non-Gaussian components

generated mixtures

z2 z3 z4

Figure 1: generator architecture of LFOICA. z1, z2, z3, z4 are i.i.d Gaussian noise variables.

The identifiability of the mixing matrix A in our model (x = GA,✓(z) = A[f✓1(z1), . . . , f✓d(zd)]
|)

follows the identifiability results for OICA [34], which is summarized in the following theorem.
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Causal Discovery under Measurement Error 

• Causal model without measurement error.


                                                                            


• Add measurement error to the causal model. 


                                             


• The causal model with measurement error can be seen as an OICA model and LFOICA can be 
applied.


X̃ = BX̃+ Ẽ
<latexit sha1_base64="U0Vwoz4k4Hrb/Ucr9t5TVjqtHW4=">AAADCHicjVHLSsNAFD2N7/qKunQTLIIglFQF3QjFIrisYG2hLZKkUx3Mi2QilJAf8E/cuRO3/oBL9Q/0L7wzpqAtohOSnDn3njNz77VDl8fCNN8K2sTk1PTM7FxxfmFxaVlfWT2PgyRyWMMJ3CBq2VbMXO6zhuDCZa0wYpZnu6xpX9dkvHnDopgH/pkYhKzrWZc+73PHEkRd6LWO4G6PpR3PEld2P21l2eEQH2XGeHR7hDrOsgu9ZJZNtYxxUMlBCfmqB/oLOughgIMEHhh8CMIuLMT0tFGBiZC4LlLiIkJcxRkyFEmbUBajDIvYa/pe0q6dsz7tpWes1A6d4tIbkdLAJmkCyosIy9MMFU+Us2R/806Vp7zbgP527uURK3BF7F+6YeZ/dbIWgT4OVA2cagoVI6tzcpdEdUXe3PhWlSCHkDiJexSPCDtKOeyzoTSxql321lLxd5UpWbl38twEH/KWNODK6DjHwflOubJb3jndK1WP8lHPYh0b2KJ57qOKE9TRIO87POMVb9qtdq89aI9fqVoh16zhx9KePgFngKzX</latexit>

X = X̃+E = (I�B)�1Ẽ+E =
⇥
(I�B)�1I

⇤  Ẽ
E

�

<latexit sha1_base64="5TIBIaa8oCYAs0rZXYHfBl/mLyY="></latexit>
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Causal Discovery from Subsampled Time Series 

• First assume that data at the original causal frequency follows a VAR(1) process 


• The observed subsampled data with subsampling factor k can be represented as 

, where  and 


xt = Cxt−1 + et

x̃t+1 = Ckx̃t + Lẽt+1 L = [I, C, C2, …, Ck−1] ẽt = (e⊤
1+tk−0, e⊤

1+tk−1, …, e⊤
1+tk−(k−1))

⊤

which belongs to the broad class of conditional Generative Adversarial Nets (cGANs) [40]. We call
this extension of LFOICA as LFOICA-conditional. A graphical representation of (8) is shown in
Figure 2(b). To learn the parameters in (8), we minimize the MMD between the joint distributions of
true and generated data:

C⇤,✓⇤ = argmin
C,✓

M (P(x̃t, x̃t+1) ,P(GC,✓(x̃t, zt+1), x̃t+1))

= argmin
C,✓

��E(x̃t,x̃t+1)⇠p(x̃t,x̃t+1)[� (x̃t)⌦ � (x̃t+1)]

� Ex̃t⇠p(x̃t),zt+1⇠p(zt+1)[�(x̃t)⌦ � (GC,✓(zt+1))]
��2, (9)

where ⌦ denotes tensor product. The empirical estimate of (9) can be obtained by randomly sampling
(x̃t, x̃t+1) pairs from true data and sampling from P(zt+1). Again, we can use the mini-batch SGD
algorithm to learn the model parameters efficiently.
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Figure 2: (a) Subsampled data with subsampling factor k. (b) LFOICA-conditional model for
subsampled data.

4 Experiment

In this section, we conduct empirical studies on both synthetic and real data to show the effectiveness
of our LFOICA algorithm and its extensions to solve causal discovery problems. We first compare the
results obtained by LFOICA and several OICA algorithms on synthetic over-complete mixtures data.
Then we apply the extensions of LFOICA mentioned in Section 3.1 and 3.2 in two causal discovery
problems using both synthetic and real data.

4.1 Recovering Mixing Matrix from Synthetic OICA Data

We compare LFOICA with several well-known OICA algorithms on synthetic OICA data.

According to [34], the mixing matrix in OICA can be estimated up to the permutation and scaling
indeterminacies (including the sign indeterminacy) of the columns. However, these indeterminacies
stop us from comparing the estimated mixing matrices by different OICA algorithms. In order
to make the comparison achievable, we need to eliminate these indetermincies. To eliminate the
permutation indetermincy, we make the non-Gaussian distribution for each synthetic IC not only
independent, but also different. With different distributions for each IC, it is convenient to permute
the columns to the same order for all the algorithms according to the recovered distribution of each
IC. We use Laplace distributions with different variance for each IC. In order to eliminate the scaling
indeterminacy, both ground-truth and estimated mixing matrix are normalized to make the L2 norm
of the first column equal to 1. With the permutation and scaling indeterminacy eliminated, we can
conveniently compare the mixing matrices obtained by different algorithms. To further avoid local
optimum, the mixing matrix is initialized by it’s true value added with noise.

Table 1 compares the mean square error (MSE) between the ground-truth mixing matrix used to
generate the data and the estimated mixing matrices by different OICA algorithms. In the table, RICA
represents reconstruction ICA [29], MFICA_Gauss and MFICA_MoG represent mean-field ICA [20]
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Causal Discovery from Subsampled Time Series 

• We propose to model the conditional probability 





• In this case, the model for subsampled data can be seen as an extension of OICA with  as mixing 
matrix and  as ICs. LFOICA can be applied.

ℙ (x̃t+1 | x̃t)

which belongs to the broad class of conditional Generative Adversarial Nets (cGANs) [40]. We call
this extension of LFOICA as LFOICA-conditional. A graphical representation of (8) is shown in
Figure 2(b). To learn the parameters in (8), we minimize the MMD between the joint distributions of
true and generated data:

C⇤,✓⇤ = argmin
C,✓

M (P(x̃t, x̃t+1) ,P(GC,✓(x̃t, zt+1), x̃t+1))

= argmin
C,✓

��E(x̃t,x̃t+1)⇠p(x̃t,x̃t+1)[� (x̃t)⌦ � (x̃t+1)]

� Ex̃t⇠p(x̃t),zt+1⇠p(zt+1)[�(x̃t)⌦ � (GC,✓(zt+1))]
��2, (9)

where ⌦ denotes tensor product. The empirical estimate of (9) can be obtained by randomly sampling
(x̃t, x̃t+1) pairs from true data and sampling from P(zt+1). Again, we can use the mini-batch SGD
algorithm to learn the model parameters efficiently.
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Figure 2: (a) Subsampled data with subsampling factor k. (b) LFOICA-conditional model for
subsampled data.

4 Experiment

In this section, we conduct empirical studies on both synthetic and real data to show the effectiveness
of our LFOICA algorithm and its extensions to solve causal discovery problems. We first compare the
results obtained by LFOICA and several OICA algorithms on synthetic over-complete mixtures data.
Then we apply the extensions of LFOICA mentioned in Section 3.1 and 3.2 in two causal discovery
problems using both synthetic and real data.

4.1 Recovering Mixing Matrix from Synthetic OICA Data

We compare LFOICA with several well-known OICA algorithms on synthetic OICA data.

According to [34], the mixing matrix in OICA can be estimated up to the permutation and scaling
indeterminacies (including the sign indeterminacy) of the columns. However, these indeterminacies
stop us from comparing the estimated mixing matrices by different OICA algorithms. In order
to make the comparison achievable, we need to eliminate these indetermincies. To eliminate the
permutation indetermincy, we make the non-Gaussian distribution for each synthetic IC not only
independent, but also different. With different distributions for each IC, it is convenient to permute
the columns to the same order for all the algorithms according to the recovered distribution of each
IC. We use Laplace distributions with different variance for each IC. In order to eliminate the scaling
indeterminacy, both ground-truth and estimated mixing matrix are normalized to make the L2 norm
of the first column equal to 1. With the permutation and scaling indeterminacy eliminated, we can
conveniently compare the mixing matrices obtained by different algorithms. To further avoid local
optimum, the mixing matrix is initialized by it’s true value added with noise.

Table 1 compares the mean square error (MSE) between the ground-truth mixing matrix used to
generate the data and the estimated mixing matrices by different OICA algorithms. In the table, RICA
represents reconstruction ICA [29], MFICA_Gauss and MFICA_MoG represent mean-field ICA [20]
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