Machine Learning Estimation of Heterogeneous
Treatment Effects with Instruments

V. Syrgkanis!, V. Lei?, M. Oprescu!, M. Hei!, K. Battocchi!, G. Lewis!

'Microsoft Research, New England (ALICE Project)
2TripAdvisor



TripAdvisor Membership Problem

& What 1s the causal effect of becoming a member on TripAdvisor on downstream activity on
the webpage?

& How does that effect vary with observable characteristics of the user?

& Useful for understanding the quality of membership offering/improvements/targeting



TripAdvisor Membership Problem

& What 1s the causal effect of becoming a member on TripAdvisor on downstream activity on
the webpage?

¢ How does that effect vary with observable characteristics of the user?

& Useful for understanding the quality of membership offering/improvements/targeting

Standard approach: Let’s run an A/B test!
Not applicable: We cannot enforce the treatment!
¢ We cannot take a random half of the users and make them members

¢ Membership is an action that requires user engagement!
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Recommendation A/B Tests

¢ In optimizing a service we want to understand the causal effects of actions that involve user
engagement (e.g. becoming a member)

® We can run a recommendation A/B test:

& “‘recommend/create extra incentives” to half the users to take the action/treatment

& Example at TripAdvisor: enable an easier sign-up flow process for a random half of users

¢ Non-Compliance: "user’s choice to comply or not " can lead to biased estimates



Instrumental Variables (IV)

¢ Instrumental Variable: any random variable Z that affects the treatment assignment T but
does not affect the outcome Y other than through the treatment

& Cohort assignment in recommendation A/B test is an instrument

¢ We can apply IV methods to estimate average treatment effect 6



Instrumental Variables (IV)

¢ Instrumental Variable: any random variable Z that affects the treatment assignment T but
does not affect the outcome Y other than through the treatment

& Cohort assignment in recommendation A/B test is an instrument

¢ We can apply IV methods to estimate average treatment effect 6

& Typical IV methods do not account for complex effect or compliance heterogeneity
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This Work: Personalized/Heterogeneous Effects

Personalization requires estimates of heterogeneous effect 6(X) as a function of observable
characteristics X

& Can we learn complex/non-linear models for the heterogeneous effect 8(X)?

¢ Can we reduce estimation to standard ML problems like regression/ classification?



Reducing to Regression/Classification

¢ Consider the compliance score (Abadie’03)

P(T =1|Z = 1,X) — P(T = 1|Z = 0,X)
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© LetY =Y —E[Y|X]and T =T — E[T|X]

¢ Estimate preliminary 0 (X)
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Reducing to Regression/Classification

¢ Consider the compliance scere (Abadie’03) Benefits of Reduction Approach
P(T = 11Z = 1,X) —|P(T = 1|Z = 0,X)
2

& Statistical and computational benefits of

i » modern ML approaches (forests, regularized
M i M Pl Y linear models, SVM, DNNs etc.)

¢ Estimate preliminary 0 (X)

o= =11

< 3 2
Orem areIpey I [(Y —0(X) - AX )) ] ¢ Cross-validation for model selection and

& Estithate robust final 8(X) hyperparameter tuning
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¢ Loss function for final estimate satisfies Neyman
orthogonality [Chernozhukov et al.’16, Foster —
M S E Syrgkanis’19]

Robustness

& Mean-Squared-Error of final 8 (X) robust to errors in
auxiliary Classifications/Regressions




MSE
Robustness

Loss function for final estimate satisfies Neyman
orthogonality [Chernozhukov et al.’16, Foster —
Syrgkanis’19]

Mean-Squared-Error of final 8 (X) robust to errors in
auxiliary Classifications/Regressions

Approach extends beyond recommendation A/B
tests, to linear-in-treatment IV setting

Resolves open question in literature [Nie-Wager’17]




C()nﬁdence ® When final regression supports CI construction,

Neyman orthogonality typically preserves the

Intervals (CIS) validity of the intervals

& Inference on best linear projection of heterogeneous
effect via OLS

¢ Inference on high-dimensional linear projections via
Debiased Lasso

& Non-Parametric inference via Honest Regression
Forests

0(X) + error




TripAdvisor Experiment

For random half of 4 million users, easier sign-up flow was enabled
& Easier sign-up incentivizes membership

¢ QOutcome: number of visits in the next 14 days

High Level Take-Aways
& Large heterogeneity based on which pages were recently visited
& Large heterogeneity based on platform of access (e.g. iPhone, Linux etc.)

& Results enable better targeting of right user population and improvements of membership
offering for user segments with small/almost zero effects



Try 1t Out and Check out Poster #185!

& Code: https://github.com/microsoft/EconML /tree/master/prototypes/dml 1v

dr_cate = IntentToTreatDRIV(model y x=RandomForestRegressor(),
model t xz=RandomForestClassifier(),
prel model effect=RandomForestRegressor(),

final model effect=LinearRegression())

dr_cate.fit(y, T, X, Z)
dr_cate.effect(X)

EconML python library for ML Estimation of Heterogeneous Treatment Effects
& https://github.com/microsoft/EconML

& “pip install econml’

ALICE (Automated Learning and Intelligence for Causation and Economics) project:

& https://www.microsoft.com/en-us/research/project/alice/



https://github.com/microsoft/EconML/tree/master/prototypes/dml_iv
https://github.com/microsoft/EconML
https://www.microsoft.com/en-us/research/project/alice/

