

TripAdvisor Membership Problem

- What is the causal effect of becoming a member on TripAdvisor on downstream activity on the webpage?
- Output
 Output
 How does that effect vary with observable characteristics of the user?
- Useful for understanding the quality of membership offering/improvements/targeting

TripAdvisor Membership Problem

- What is the causal effect of becoming a member on TripAdvisor on downstream activity on the webpage?
- Output
 Output
 How does that effect vary with observable characteristics of the user?
- Useful for understanding the quality of membership offering/improvements/targeting

Standard approach: Let's run an A/B test!

Not applicable: We cannot enforce the treatment!

- ♦ We cannot take a random half of the users and make them members
- Membership is an action that requires user engagement!

Recommendation A/B Tests

♦ In optimizing a service we want to understand the causal effects of actions that involve user engagement (e.g. becoming a member)

Recommendation A/B Tests

- ♦ In optimizing a service we want to understand the causal effects of actions that involve user engagement (e.g. becoming a member)
- ♦ We can run a **recommendation A/B test**:
 - ♦ "recommend/create extra incentives" to half the users to take the action/treatment
- ♦ Example at TripAdvisor: enable an easier sign-up flow process for a random half of users

Recommendation A/B Tests

- ♦ In optimizing a service we want to understand the causal effects of actions that involve user engagement (e.g. becoming a member)
- ♦ We can run a **recommendation A/B test**:
 - ♦ "recommend/create extra incentives" to half the users to take the action/treatment
- ♦ Example at TripAdvisor: enable an easier sign-up flow process for a random half of users
- ♦ Non-Compliance: ``user's choice to comply or not`` can lead to biased estimates

Instrumental Variables (IV)

- ♦ **Instrumental Variable:** any random variable **Z** that affects the treatment assignment **T** but does not affect the outcome **Y** other than through the treatment
- ♦ Cohort assignment in recommendation A/B test is an instrument
- \diamond We can apply IV methods to estimate average treatment effect θ

Instrumental Variables (IV)

- ♦ **Instrumental Variable:** any random variable **Z** that affects the treatment assignment **T** but does not affect the outcome **Y** other than through the treatment
- ♦ Cohort assignment in recommendation A/B test is an instrument
- \diamond We can apply IV methods to estimate average treatment effect θ

Typical IV methods do not account for complex effect or compliance heterogeneity

This Work: Personalized/Heterogeneous Effects

Personalization requires estimates of **heterogeneous effect** $\theta(X)$ as a function of observable characteristics **X**

This Work: Personalized/Heterogeneous Effects

Personalization requires estimates of **heterogeneous effect** $\theta(X)$ as a function of observable characteristics **X**

- \diamond Can we learn complex/non-linear models for the heterogeneous effect $\theta(X)$?
- ♦ Can we reduce estimation to standard ML problems like regression/classification?

Reducing to Regression/Classification

Consider the compliance score (Abadie'03)

$$\Delta(X) = (2Z - 1) \frac{\mathbb{P}(T = 1 | Z = 1, X) - \mathbb{P}(T = 1 | Z = 0, X)}{2}$$

- \Leftrightarrow Let $\tilde{Y} = Y \mathbb{E}[Y|X]$ and $\tilde{T} = T \mathbb{E}[T|X]$
- \diamond Estimate **preliminary** $\widehat{\boldsymbol{\theta}}(\boldsymbol{X})$

$$\hat{\theta} = \underset{\theta(\cdot)}{\operatorname{argmin}} \mathbb{E}\left[\left(\tilde{Y} - \theta(X) \cdot \Delta(X)\right)^{2}\right]$$

 \diamond Estimate **robust final** $\theta(X)$

$$\min_{\theta(\cdot)} \mathbb{E} \left[\left(\widehat{\theta}(X) + \frac{\widetilde{Y} - \widehat{\theta}(X) \cdot \widetilde{T}}{\Delta(X)} - \theta(X) \right)^{2} \right]$$

Reducing to Regression/Classification

Classification

Consider the compliance score (Abadie'03)

$$\Delta(X) = (2Z - 1) \frac{\mathbb{P}(T = 1 | Z = 1, X) - \mathbb{P}(T = 1 | Z = 0, X)}{2}$$

- \Leftrightarrow Let $\tilde{Y} = Y \mathbb{E}[Y|X]$ and $\tilde{T} = T \mathbb{E}[T|X]$
- \Leftrightarrow Estimate **preliminary** $\widehat{\boldsymbol{\theta}}(\boldsymbol{X})$

Regression
$$\widehat{\theta} = \underset{\theta(\cdot)}{\operatorname{argmin}} \mathbb{E}\left[\left(\widetilde{Y} - \theta(X) \cdot \Delta(X)\right)^{2}\right]$$

 \diamond Estimate robust final $\theta(X)$

$$\min_{\theta(\cdot)} \mathbb{E}\left[\left(\hat{\theta}(X) + \frac{\tilde{Y} - \hat{\theta}(X) \cdot \tilde{T}}{\Delta(X)} - \theta(X)\right)^{2}\right]$$

Reducing to Regression/Classification

Classification

Consider the compliance score (Abadie'03)

$$\Delta(X) = (2Z - 1) \frac{\mathbb{P}(T = 1 | Z = 1, X) - \mathbb{P}(T = 1 | Z = 0, X)}{2}$$

- \Leftrightarrow Let $\tilde{Y} = Y \mathbb{E}[Y|X]$ and $\tilde{T} = T \mathbb{E}[T|X]$
- \diamond Estimate **preliminary** $\widehat{\boldsymbol{\theta}}(X)$

Regression
$$\widehat{\theta} = \underset{\theta(\cdot)}{\operatorname{argmin}} \mathbb{E}\left[\left(\widetilde{Y} - \theta(X) \cdot \Delta(X)\right)^{2}\right]$$

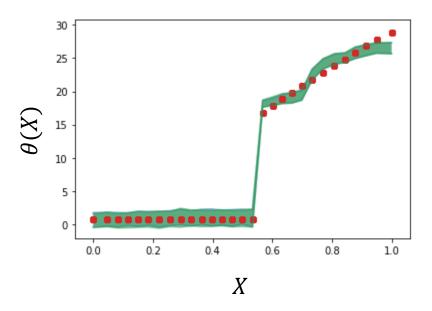
 \diamond Estimate robust final $\theta(X)$

$$\min_{\theta(\cdot)} \mathbb{E}\left[\left(\hat{\theta}(X) + \frac{\tilde{Y} - \hat{\theta}(X) \cdot \tilde{T}}{\Delta(X)} - \theta(X)\right)^{2}\right]$$

Benefits of Reduction Approach

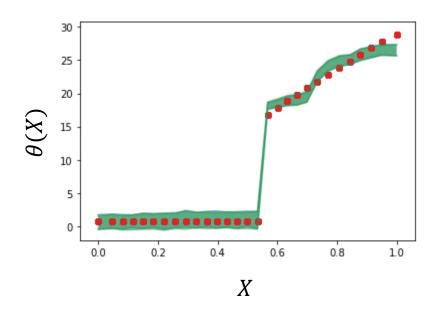
- Statistical and computational benefits of modern ML approaches (forests, regularized linear models, SVM, DNNs etc.)
- ♦ Cross-validation for model selection and hyperparameter tuning
- ♦ **Interpretability** of estimated models (SHAP, Lime, Influence functions)

MSE Robustness



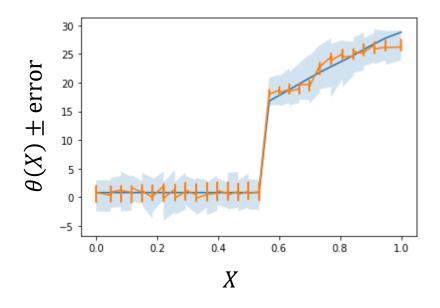
- Loss function for final estimate satisfies Neyman orthogonality [Chernozhukov et al.'16, Foster – Syrgkanis'19]
- \diamond Mean-Squared-Error of final $\theta(X)$ robust to errors in auxiliary Classifications/Regressions

MSE Robustness



- Loss function for final estimate satisfies Neyman orthogonality [Chernozhukov et al.'16, Foster – Syrgkanis'19]
- \diamond Mean-Squared-Error of final $\theta(X)$ robust to errors in auxiliary Classifications/Regressions
- Approach extends beyond recommendation A/B tests, to linear-in-treatment IV setting
- ♦ Resolves open question in literature [Nie-Wager'17]

Confidence Intervals (CIs)



- When final regression supports CI construction, Neyman orthogonality typically preserves the validity of the intervals
 - ♦ Inference on best linear projection of heterogeneous effect via OLS
 - ♦ Inference on high-dimensional linear projections via Debiased Lasso
 - ♦ Non-Parametric inference via Honest Regression Forests

TripAdvisor Experiment

For random half of 4 million users, easier sign-up flow was enabled

- Easier sign-up incentivizes membership
- Outcome: number of visits in the next 14 days

High Level Take-Aways

- Large heterogeneity based on which pages were recently visited
- ♦ Large heterogeneity based on platform of access (e.g. iPhone, Linux etc.)
- ♦ Results enable better targeting of right user population and improvements of membership offering for user segments with small/almost zero effects

Try it Out and Check out Poster #185!

Code: https://github.com/microsoft/EconML/tree/master/prototypes/dml_iv

EconML python library for ML Estimation of Heterogeneous Treatment Effects

- https://github.com/microsoft/EconML
- `pip install econml`

ALICE (Automated Learning and Intelligence for Causation and Economics) project:

https://www.microsoft.com/en-us/research/project/alice/